Добавить проект
Прочитать правила
Платный доступ
Авторизация:
Информация


Чертежи » Дипломні і курсові роботи : Машинобудування і механника : Технологія машинобудування : Дипломный проект - Разработка технологического оборудования для изготовления зубчатых колес с применением технологии непрерывного действия

Дипломный проект - Разработка технологического оборудования для изготовления зубчатых колес с применением технологии непрерывного действия

| Рб:
6
| Платформа: Компас | Поместил: nayma | Дата: 15.1.19 13:30 | Год выпуска: 2017 | Размер: 2.30 MB | Скачали: 0
Коротко о файле: ДонНТУ / Кафедра технологии машиностроения / Целью выполнения данной работы является комплексное повышение эффективности и качества производства зубчатых колес за счет разработки прогрессивного способа обработки на основе применения технологии непрерывного действия. / Состав: 8 листов чертежи (конструкторское обеспечение, копирный блок, система СОТС, чертеж блока, чертеж приспособления, чертеж рабочей позиции КО2, чертеж хона в сборе, чертеж хона отдельно) + ПЗ.
Дипломный проект - Разработка технологического оборудования для изготовления зубчатых колес с применением технологии непрерывного действия

Содержание
Введение
1 Аналитический обзор современного состояния вопроса исследования. Цель и задачи работы
1.1 Характеристика современных способов отделочной обработки зубчатых колес
1.2 Анализ работ, связанных с автоматизацией способов отделочной обработки зубчатых колес
1.3 Цель и задачи работы
2 Общая часть
2.1 Назначение, параметры и конструкция зубчатых колес
2.2 Анализ и классификация зубчатых колес для обработки на автоматических линиях непрерывного действия
2.3 Анализ технологичности зубчатого колеса
2.4 Определение типа производства
2.5 Выводы
3 Технологическая часть
3.1 Анализ конструкции зубчатого блока. Назначение методов обработки в соответствии с параметрами качества
3.2 Определение припусков на обработку
3.3 Анализ базирования
3.4 Разработка нового способа хонингования
3.5 Размерный анализ технологического процесса производства зубчатых колес на базе системы непрерывного действия
3.6 Расчет и выбор режимов обработки
3.7 Выводы
4 Конструкторская часть
4.1 Разработка структуры технологического модуля
4.2 Разработка торцового копира для сообщения возвратно-поступательного перемещения заготовкам
4.3 Разработка инструмента для хонингования зубчатых колес
4.4 Анализ кинематической структуры процесса хонингования зубчатых колес
4.5 Разработка конструкторского обеспечения процесса хонингования зубчатых колес
4.5.1 Определение размеров технологического ротора
4.5.2 Определение способов крепления основных элементов роторного автомата
4.6 Разработка зажимного приспособления
4.6.1 Разработка схемы установки и закрепления детали в приспособлении
4.6.2 Конструкция и принцип работы станочного приспособления
4.6.3 Расчет на прочность элементов приспособления
4.6.4 Расчет приспособления на точность
4.7 Выводы
5 Исследовательская часть
5.1 Разработка математической модели преобразования аффинного пространства
5.2 Анализ и разработка системы СОТС
5.3 Определение напряженного состояния элементов конструкции технологического модуля в системе ANSYS
5.3.1 Построение расчетной схемы и определение сил действующих на корпус технологического ротора
5.3.2 Выполнение расчета напряженного состояния в среде ANSYS
5.3.3 Выводы по результатам расчета корпуса технологического ротора на прочность
5.4 Анализ результатов работы и разработка рекомендаций
Выводы
Список использованных источников

В работе представлена характеристика современных способов отделочной обработки зубчатых колес, проанализированы работы связанные с автоматизацией способов отделочной обработки зубчатых колес. В конструкторской части разработана структура технологического модуля, инструмент для выполнения операции зубообработки, конструкция агрегатов и узлов роторной машины для выполнения разрабатываемой операции и зажимное приспособление. В исследовательской части проведена разработка математической модели преобразования аффинного пространства, определено напряженное состояние корпуса технологического ротора под действием сил резания, а также разработана система СОТС для подачи его в зону обработки.
В графической части представлены рабочий чертеж зубчатого блока, классификация зубчатых колес, размерный анализ технологического процесса, структура технологического модуля, чертеж инструмента для хонингования зубчатых колес, сборочные чертежи технологического ротора, рабочей позиции, зажимного приспособления и системы СОТС, напряженное состояние корпуса технологического ротора, определенное в системе ANSYS.

Конструкция зубчатого блока представляет собой деталь типа втулка с двумя зубчатыми венцами. Деталь входит в узел – коробку скоростей, в которой выполняет функцию изменение угловой скорости на ведомом валу. В процессе работы деталь, помимо вращательного движения на валу, совершает поступательное движение вдоль оси вала в моменты переключения скоростей. Для свободного перемещения зубчатого блока по валу, посадка шлицевого отверстия на вал выполнена с гарантированным зазором, но для избежания перекоса детали, который может привести к значительному уменьшению пятна контакта зубчатого зацепления, зазоры имеют минимальное значение, а отверстие выполняется по 7-му квалитету.
Для снижения сил резания при протягивании шлицевого отверстия, уменьшения усилия при перемещении зубчатого блока при переключении в коробке скоростей, а также для уменьшения трудоемкости механической обработки базового отверстия 26+0,28 в детали выполнена канавка 32Н14 шириной 40мм.
В процессе переключения скоростей торцы венцов зубчатого блока контактируют с торцами зубчатых колес входящих с ними в зацепление. Это приводит к износу торцов зубчатого блока. Для уменьшения износа торцов зубчатых венцов блока, на них выполнены уклоны 150 способствующие более плавному вхождению в зацепление с зубчатыми колесами и уменьшению их износу.
Зубчатый венец большего диаметра выполнен с большей точностью и меньшей шероховатостью поверхностей зубьев. Эти требования вызваны тем, что данный венец работает при больших окружных скоростях, а также находится в зацеплении более длительное время, что требует уменьшение шума при работе и увеличение КПД передачи.

Техническая характеристика ротора:
1.Мощность привода вращения ротора: 12 кВт
2.Частота вращения ротора: 1,3 об/мин
3.Мощность привода врацения хона: 4 кВт
4.Частота вращения хона: 2.8 об/мин
5.Производительность роторного автомата: П=0.53 шт/с
6.Количество рабочих позиций 24
7.Модуль обрабатываемых зубчатых колес: т=3.5 мм

Техническая характеристика системы подачи СОТС:
Давление питающей гидросети 0.2 МПа
1.Расход смазочно-охлаждающей жидкости на одну позицию 1.4л/ч
2.Смазочно-охлаждающая жидкость - керосин

Технические характеристики Приспособления зажимного:
1 Усилие на штоке W = 14000 Н
2 Усилие закрепления Q = 34000 Н
3 Давление в пневмосети Р = 6,3 МПа
4Рабочий ход поршня l = 16 мм
5. Рабочая жидкость масло индустриальное И20 ГОСТ 20799-88

Выводы
В данной работе предложен новый способ отделочной обработки зубчатых колес на базе технологии непрерывного действия, который обеспечивает повышение качества и эффективности производства зубчатых колес.
Для заданной детали (зубчатого блока) разработан подробный технологический процесс в условиях массового производства, одна из операций которого выполняется на машине роторного типа. В технологической части приведен размерный анализ технологического процесса на токарные операции, в котором определили технологические размеры с отклонениями. На все операции рассчитаны режимы обработки и представлена последовательность выполнения переходов. Разработана специальная операция, которая выполняется на роторном автомате.
В конструкторской части, для реализации предложенного способа, был разработан роторный автомат и все механизмы, входящие в его состав. Расчетным способом определили фактическую цикловую производительность роторного автомата, которая составила Пцф=0,53 шт/с. Разработан и рассчитан инструмент для обработки зубчатых блоков – зубчатый хон. Для закрепления и базирования обрабатываемой детали в рабочих позициях роторного автомата разработано и рассчитано зажимное приспособление цангового типа с гидравлическим приводом. Расчетом выяснили, что погрешность установки в данном приспособлении составляет 24 мкм, что не превышает 1/3 допуска на получаемый размер.
В исследовательской части разработана математическая модель преобразования аффинного пространства, в которой, на основе матриц, выполняется исследование параметров движения всех элементов роторной машины. Разработана система подвода смазочно-охлаждающих технологических средств в зону обработки. Выполнен анализ возможных СОТС для данного способа и вариантов подвода их в зону обработки, на основе которого выбрана наиболее рациональная СОЖ с точки зрения эффективности действия и экономичности. В программной среде ANSYS смоделировали напряженное состояние корпуса роторной машины, при этом на основе метода конечных элементов определили напряжение во всех точках корпуса роторного автомата, а также определили его деформации и сделали выводы о пригодности конструкции к разработанному способу.




Содержимое архива

Проекты (работы, чертежи) можно скачать став участником и внеся свой вклад в развитие. Как скачать ? подробнее >>>>>>>
 
Cloudim - онлайн консультант для сайта бесплатно.