Добавить проект
Прочитать правила
Платный доступ
Авторизация:
Информация


%20%20%20%20%20%20

Найдено совпадений - 1375 за 0.00 сек.


ДП 1156. Дипломный проект - Здание Технопарка. Складской комплекс 90 х 120 м в г. Норильск | AutoCad
Ведение 
1.Архитектурно строительный раздел 
1.1Генеральный план с решением вопросов защиты окружающей среды
1.2Архитектурно-строительные решения 
1.2.1Описание и обоснование внешнего и внутреннего вида объекта капитального строительства, его пространственной, планировочной и функциональной организации 
1.2.2Обоснование принятых объемно-пространственных и архитектурно-художественных решений, в том числе в части соблюдения предельных параметров разрешенного строительства объекта капитального строительства 
1.2.3Обоснование принятых архитектурных решений в части обеспечения соответствия зданий, строений и сооружений установленным требованиям энергетической эффективности 
1.2.4Перечень мероприятий по обеспечению соблюдения уставленных требований энергетической эффективности к архитектурным решениям, влияющим на энергетическую эффективность зданий, строений и сооружений 
1.3Описание и обоснование использованных композиционных приемов при оформлении фасадов объекта и интерьеров объекта капитального строительства  
1.4Описание решений по отделке помещений 
1.5Описание архитектурных решений, обеспечивающих естественное освещение помещений с постоянным пребыванием людей 
1.6Описание архитектурно-строительных мероприятий, обеспечивающих защиту помещений от шума, вибрации и другого воздействия 
1.7Описание решений по светоограждению объекта, обеспечивающих без-опасность полета воздушных судов 
1.8Описание решений по декоративно-художественной и цветовой отделке интерьеров 
1.9Водопровод и канализация 
1.10Вентиляция 
1.11Охранно-пожарная сигнализация 
1.12Защита металлических элементов и конструкций от коррозии 
1.13Теплотехнический расчет 
1.13.1 Теплотехнический расчет ограждающих конструкций 
1.13.2 Теплотехнический расчет кровли 
1.14Мероприятия по профилактике чрезвычайных ситуаций с учетом норм пожарной безопасности 
1.15Мероприятия, предусмотренные на участке (территории)
2.Расчётно-конструктивный раз-дел 
2.1Исходные данные 
2.2Расчет стропильной Фермы ФС-1 
2.3Расчет стропильной Фермы ФС-2 
2.4Расчет подстропильной фермы ПФ-1 
3.Основания и фундаменты 
3.1Исходные данные 
3.2Расчет фундамента Фм-1 
4.Проект производства работ 
4.1Характеристика объекта 
4.1.1 Определение объемов монтажных работ 
4.1.2 Выбор способов, методов и комплекта машин для монтажа конструкций 
4.1.3 Определение требуемых параметров монтажных кранов 
4.1.4 Составление калькуляции трудовых затрат 
4.1.5 Выбор комплекта кранов и машин на основании ТЭС вариантов 
4.1.6 Календарный план производства работ 
4.1.7 Технико-экономические показатели по технологической карте 
4.1.8 Выбор транспортных средств 
4.1.9 Указания по контролю качества работ 
4.1.10 Требования безопасности и охраны труда 
4.2 Стройгенплан 
4.2.1 Размещение монтажных механизмов
4.2.2 Проектирование приобъектного складского хозяйства и временных дорог 
4.2.3 Проектирование санитарно-бытового и административного обслуживания работающих 
4.2.4 Проектирование временного водо-, электроснабжения 
5. Научно-исследовательский раздел 
5.1 Основная часть 
5.2 Специальная часть 
Заключение 
Библиографический список 


Лист 1 – Схема планировочной организации земельного участка
Лист 2 – Цветовое решение фасадов А-Ю, Ю-А, 1-16, 16-1
Лист 3 – План на отм. 0.000
Лист 4 – Разрез 1-1, разрез 2-2, узлы 1-3
Лист 5 – Схема расположения элементов покрытия по нижним поясам ферм
Лист 6 – Стропильная ферма ФС1, стропильная ферма ФС2,
Лист 7 – Схема расположения фундаментов и колонн фундаментов 
Лист 8 – Технологическая карта на монтаж колонн
Лист 9 – Стройгенплан


Размер здания (без учета козырьков и крылец) составляет: в/о 1-16/А-С - 90,0 м х 84,0 м, в/о 1-13/С-Ю – 72,0 м х 36,0 м.
В соответствии с проектными решениями и СТУ, встройки выгораживаются от основного объема здания противопожарными преградами.
Высота до низа стропильных ферм основного объема корпуса составляет 12,50 м, высота до низа подстропильных ферм – 12,05м. Размер сетки колонн в зоне склада - 12,0х24,0 м, в зоне под антресолью – 6,0х12,0 м, в зонах встроек АБК - 6,0х6,0 м.
Отметка парапета здания +15,800.
Ограждающие конструкции здания (наружные стены) запроектированы из стеновых сэндвич-панелей с заполнением из минераловатных плит толщиной 120 мм.
Ограждение цокольной части здания запроектировано из ж/б панелей с утеплением.
Отмостка вокруг здания - из песчаная асфальтобетонная смесь шириной 1,5 м, на участке фасада вдоль зоны разгрузки – погрузки отмостка совмещена с покрытием проездов.
Кровля здания плоская, неэксплуатируемая с организованными внутренними водостоками. В конструкции кровли в качестве утеплителя приняты минераловатные плиты ТЕХНОРУФ общей толщиной 140 мм. Водоизоляционный ковер выполнен из ПВХ-мембраны ECOPLAST V-RP. Высота парапета кровли запроектирована равной не менее 0,6 м.
Разуклонка припарапетной зоны и между водосточными воронками выполняется с помощью клиновидной теплоизоляции "ТЕХНОНИКОЛЬ XPS-КЛИН".
Внутренние перегородки административно-бытовых встроек запроектированы из гипсокартона ГКЛ-А-ПК-2000х1200х12.5 ГОСТ 6266-97. В помещениях с влажными процессами запроектированы перегородки из влагостойкого гипсокартона ГКЛВ-А-ПК-2000х1200х12.5 ГОСТ 6266-97. В местах общего пользования (коридоры, тамбуры, лестничные клетки) запроектированы перегородки из гипсокартона ГКЛ-А-ПК-2000х1200х12.5 ГОСТ 6266-97 заводской готовности.
Внутренние перегородки технических помещений запроектированы из блоков ячеистого бетона автоклавного твердения I/600х300х200/D600/B3.5/F50 ГОСТ 31360-2007.
Внутренние противопожарные перегородки, отделяющие административно-бытовые встройки от складского помещения, запроектированы из сэндвич-панелей с заполнением из минераловатных плит толщиной 100 мм. Перегородки технических помещений – РУ-0,4 кВ, помещения для подзарядки аккумуляторов, тамбур-шлюза зарядной, венткамеры, отделяющие данные помещения от складской зоны, выполнены из сэндвич-панелей с заполнением из минераловатных плит толщиной 100 мм. 
Наружные двери - металлические утепленные глухие по ГОСТ 31173-2016 и металлические остекленные.
Окна - из ПВХ-профилей с двухкамерными стеклопакетами по ГОСТ 30674-99 и витражи.
Противопожарные двери - металлические противопожарные по ГОСТ Р 57327-2016.
За относительную отметку 0.000 принят уровень чистого пола основного здания, что соответствует абсолютной отметке 170,40, в технической пристройке по оси Ю – 169,65.
Степень огнестойкости здания - II.
Класс пожарной опасности – СО.
Класс ответственности – Нормальный (II).
В состав здания, согласно статье 32 «Технического регламента о требованиях пожарной безопасности ФЗ №123» входят помещения следующих основных классов: Ф3.6 - бытовые помещения; Ф4.3 – административные; Ф5.2- складские помещения.
Трехэтажные встройки административно-бытового назначения расположены в осях 1-3/А-Е и 14-16/А-В.
Пристройка технического назначения расположена по оси Ю между осями 1-2.
Состав помещений здания:
На отм. 0,000 размещены:
•Помещение склада, где располагаются: участок основного высокостеллажного хранения, сортировка, сборка, зона погрузки, имеющие секционные ворота для осуществления погрузочных операций;
•в составе группы санитарных и административно-бытовых помещений: санитарные узлы работников корпуса, комнаты уборочного инвентаря; операторские склада, кабинеты, комната охраны/диспетчерская здания, комната водителей;
•в составе группы технических помещений: помещение для подзарядки аккумуляторных батарей (зарядная), тамбур-шлюз, венткамера, помещение для поломоечной машины, трансформаторные, РУ-10, РУ-0,4;
На отм. +3,600; +7,200 размещены: 
•в составе группы санитарных и административно-бытовых помещений: санитарные узлы, комнаты уборочного инвентаря, кабинеты, комната приема пищи, комната охраны, раздевалки, сантехнические помещения;
•в составе группы технических помещений: венткамера, серверная.
На отм. +7,200 размещены: 
•антресоль, где располагаются участки низкостеллажного хранения.
В пристройке технического назначения по оси Ю в осях 1-2:
•узел ввода.
Для осуществления коммуникации между этажами встроек предусмотрены лестничные клетки типа Л1. Согласно СП 2.13130.2012 п.5.4.16 лестничные клетки, соединяющие этажи встроек, имеют на каждом этаже остекленные проемы с площадью остекления не менее 1,2м2. При этом устройство для открывания окон не должно располагаться выше 1,7м от уровня площадки лестничной клетки или пола этажа.
Со стороны подъезда грузового автотранспорта по фасаду по оси А для организации приема и выгрузки товаров запроектированы посты для разгрузки крупногабаритного грузового транспорта.
Предусмотрена установка герметизаторов проемов (докшелтеров), а также автоматических, подъемных, утепленных ворот, с направляющими для колес.
Со стороны фасада в осях 1-3 и 14-16 запроектированы входные группы. Над входными группами предусмотрены козырьки.
Проектом предусматривается модульный КПП общей площадью 15,4 м2 и габаритными размерами 6,2х2,48х2,7 м. В состав помещений модульного КПП входит: проходная, комната охраны.
Также проектом предусматривается отдельно стоящая комплектная газовая котельная.





Разработанная выпускная квалификационная работа на тему:
«Особенности и современные методики строительства зданий в условиях Крайнего Севера и вечной мерзлоты» отвечает ряду требований – максимально по возможности, описаны все этапы проектирования. В ходе выполнения работы были сформулированы следующие выводы.
В архитектурно-строительном разделе было разработано и запроектировано здание на местности. Проведен теплотехнический расчет ограждающих конструкций.
В расчетно-конструктивном разделе произведен расчет основания и фундаментов, определена несущая способность столбчатого фундамента. В строительных конструкциях произведен расчет пространственной схемы по I и II группе предельных состояний. 
В организационно-технологическом разделе разработаны объектный строительный генеральный план и технологическую карту на монтаж колонн.
В графической части-подробные архитектурные чертежи объекта, рабочие чертежи сборных конструкций, технологические карты и строительный генеральный план.
 
Дата добавления: 22.08.2022
КП 1157. Курсовой проект - 9-ти этажная кирпичная жилая блок-секция на 36 квартир 18,6 х 14,4 м в г. Заринск | AutoCad,

1.Исходные данные:    3
2. Объемно-планировочное решение.    4
3. Конструктивное решение здания    6
4. Теплотехнический расчет наружных ограждающих конструкций.    12
5. Инженерное и санитарно- техническое оборудование.    18
Список использованных источников.    19


- длина в осях 1 – 7:   18,6м
- ширина в осях А-Д:  14,4 м
- высота здания –  28,03 м 
- высота этажа – 2,8м
- высота помещения – 2,5м
В здании предусмотрено подвальное помещение высотой 2,0м.
В здании предусмотрен холодный чердак высотой 1,5 м
Толщина  наружных стен согласно теплотехнического расчета № 1 приня-та 400мм, внутренних стен 380мм, перегородок 120мм
Привязка наружных самонесущих стен нулевая, привязка внутренних не-сущих стен – центральная по 190мм.
На каждом этаже расположены две двухкомнатные и две трехкомнатные квартиры


Конструктивная схема – с поперечными несущими стенами  и  опиранием плит перекрытия по двум сторонам.
Жесткость и устойчивость здания обеспечивается за счет:
- правильного выбора типа и глубины заложения фундамента
- связи наружных и внутренних стен за счет перевязки швов кладки
- укладки плит перекрытия по слою цементно-песчаного раствора и анкеровки плит перекрытий со стенами и между собой.
Краткое описание запроектированных конструкций:
Фундаменты ленточный с монолитным железобетонным ростверком. Для обеспечения равномерной передачи нагрузок от стены уложены монолитные железобетонные ростверки.
Стены запроектированы кирпичные. Несущие стены в здании поперечные.
Толщина наружных стен по теплотехническому расчету №1 принята 400мм. Стены наружные слоистой кладки. Несущая часть выполнена из газобетона D300, материал утепления стен – мин вата толщиной 20мм, принятый по теплотехническому расчету №1, наружная отделка выполнена из кирпича керамического пустотелого толщиной 120 мм.
Внутренние стены выполнены из глиняного кирпича на цементно-песчаном растворе толщиной 380мм. В них устроены вентиляционные каналы.
Привязка стен к разбивочным осям для внутренних стен составляет 190мм. Наружные продольные стены самонесущие и имеют нулевую привязку.
Стены подвала выполнены из сборных  бетонных блоков по ГОСТ 13579-78. Фундаментные блоки имеют (размеры 400х600 ФБС24.6.6), 400х300 (ФБС24.6.3. Класс бетона для фундаментных блоков по прочности на сжатие принят В7,5. Между фундаментными блоками и кирпичной стеной устроена гидроизоляция.
Перегородки выполнены из кирпича толщиной 120мм. Конструкция перегородок удовлетворяет нормативным требованиям изоляции воздушного шума.
Плиты перекрытия железобетонные с круглыми пустотами толщиной 220мм приняты по  Серии 1.141-1 по каталогу индустриальных конструкций и изделий для жилищно-гражданского строительства. Плиты перекрытия опираются по двум сторонам на поперечные внутренние стены на 120мм. Плиты анкеруются металлическими анкерами в кирпичную кладку и между собой. Сваривают между собой закладные детали плит. Это обеспечивает горизонтальную жесткость здания. Стыки между плитами заполнены цементно-песчаным раствором.
Крыша запроектирована  сборная железобетонная с холодным чердаком. Чердачное перекрытие утепленное. Чердачное перекрытие состоит из железобетонной пустотной плиты толщиной 220мм, пароизоляционного слоя – изоспан RS B, материала утепления –мин вата толщиной 200мм, принятый по теплотехническому расчету, цементно-песчаной стяжки толщиной 30мм. Высота чердака запроектирована высотой 1,5м.
Основанием под кровлю является железобетонная пустотная плита  толщиной 220мм. Кровля состоит из стяжки из цементно-песчаного раствора 20мм, 2 слоя унифлекса марки ЭКП 3,8 мм.
Стены с вентиляционными каналами выходят за пределы покрытия.
Водоотвод с крыши – внутренний. На кровле размещены две водоприемные воронки. Уклон кровли составляет 3%.
Машинное отделение лифта располагается на крыше здания.
На основании теплотехнического расчета окна запроектированы из двух-камерного стеклопакета в раздельных переплетах из обычного стекла. Балконные двери приняты по конструкции аналогичные окнам. Форма и основные размеры окон и балконных дверей выполнены в соответствии с ГОСТ 11214-2003, Серия окон 1.136.5-23.
Двери наружные запроектированы двупольные деревянные со сплошным заполнением щитов деревянных полотен серии 1.136.5-19. 
Двери внутренние деревянные с глухими и остекленными полотнами по ГОСТ 6629-88
Ограждение балконов – керамический облицовочный кирпич
Лестницы сборные железобетонные, состоящие из лестничных маршей и площадок по серии 1.152.1-8. Класс бетона принят В15. 
Лестничные площадки запроектированы маркой ЛП10.25.12 (междуэтажные) и ЛП.12.25-12 (этажные), лестничные марши маркой 1ЛМ21.13.20-4. 
Дата добавления: 23.08.2022
КП 1158. Курсовой проект (колледж) - 2-х этажный торговый центр 42 х 15 м в г. Нижневартовск | AutoCad

ВВЕДЕНИЕ    3
1. ОБЪЕМНО-ПЛАНИРОВОЧНОЕ РЕШЕНИЕ    4
2. КОНСТРУКТИВНАЯ СХЕМА ЗДАНИЯ    9
3. ОБЕСПЕЧЕНИЕ ПРОСТРАНСТВЕННОЙ ЖЕСТКОСТИ    12
4. КОНСТРУКЦИЯ ЗДАНИЯ    12
5. ЗАКЛЮЧЕНИЕ    15
6. СПИСОК ЛИТЕРАТУРЫ    16


Основные помещения:
- на первом этаже находятся: венткамера, электрощитовая, котельная, 5 магазинов, помещение для маркета, включая служебные помещения. 
- на втором этаже – 7 магазинов.


В качестве фундамента принимаем монолитную железобетонную плиту толщиной 600 мм на песчаной подсыпке толщиной 200 мм.
Вертикальная гидроизоляция осуществляется тщательной окраской наружных поверхностей стен фундамента горячим битумом по слою утеплителя и зачеканкой швов гидроизоляционным цементом. Фундамент утепляется пенополистиролом. По периметру здания устраивается отмостка из асфальтобетона шириной 1м. Уклон отмостки 1:10. 
Для фундаментов использовался бетон марки М400. 
Для защиты фундамента от влаги предусмотрено устройство гидроизоляции. По наружным поверхностям ленточного фундамента был установлен рубероидный слой. А подушки из песка помогут не задерживать влагу.
В проектируемом здании наружные стены приняты монолитные железобетонные с утеплителем.  Общая толщина наружных стен была рассчитана и принята равной 530 мм. Толщина внутренних перегородок равна 200 мм. и 100 мм., стены лестничного узла приняты 400 мм.
Перегородки опираются на монолитные плиты перекрытий. Зазор между перекрытием и перегородками тщательно проконопачивается.   Звукоизоляция обеспечивается тщательной заделкой швов.
Элементами междуэтажного перекрытия являются монолитные железобетонные плиты. 
В здании для связи между этажами предусмотрена ж/б лестница . Лестница изготовлена из монолитных железобетонных марш-площадок. Ширина марша 1,2 м. Этажные и межэтажные площадки изготовлены из монолитного железобетона. Размеры ступеней: проступь – 300 мм, подступенок – 150 мм. Высота ограждений лестничных маршей — 1,2  м. 
Перегородки
Выполнены из монолитного железобетона толщина внутренних перегородок равна 200 мм. и 100 мм., стены лестничного узла приняты 400 мм.
Полы из керамической плитки устраивают в душевых, коридоре, санузлах, кладовых, прихожих, в холе и.т.д. .
Плюсы: самый износостойкий материал; легко моется; не плавится и не горит; не выделяет токсинов и аллергены; не притягивает пыль; не боится жиров, масел; не выцветает.
Минусы: плитку можно расколоть, если уронить тяжелый предмет из камня или металла; без подогрева плитка очень холодная.
Полы из ламината- высокоплотная древесноволокнистая водостойкая плита. Устраивают в игровых залах, кухнях, спальнях, прихожих и коридорах. Плюсы: Цена, значительно ниже, чем цена таких напольных покрытий, как массив дерева, паркет, напольная керамическая плитка, износостойкость, простота монтажа, разнообразие декора, цветоустойчивость.
Минусы: ненатуральность (для улучшения технологических характеристик в изготовлении ламината используется много химических компонентов), при повреждении исправить дефект не удастся
Потолки
Выровнины и заделаны в шпаклёвку в 2-слоя и покрашены. Имеются потолочные плинтуса. 
Нормы освещенности не рассматриваются. Материал и марки оконных блоков по ГОСТ 11214-2003. Двери приняты с учетом пропускной способности и возможности свободного проноса оборудования по ГОСТ 6629-88. Конструкция дверей щитовая. Дверная коробка крепится к стенам ершами в двух местах на расстоянии 1.5м к антисептированным деревянным пробкам аналогично оконным коробкам. Зазор между коробкой и конструкцией ограждения закрывают наличником.


Общая площадь    1420,00 м2
полезная площадь    530,00 м2
строительный объем    6120,00 м3


 
Дата добавления: 23.08.2022
КП 1159. Курсовой проект (колледж) - Кирпичный жилой дом с углом поворота 90гр + Главный корпус базы, г. Вятка | AutoCad

Введение
Раздел 1 Жилое здание.
1.1 Общая характеристика проектируемого здания
1.2 Объемно-планировочное решение
1.3 Расчеты к архитектурно-строительной части
1.4 Конструктивные решения
1.5 Отделка здания
1.6 Инженерное оборудование здания
1.7 Технико-экономические показатели
Раздел 2 Промышленное здание.
2.1 Общая характеристика проектируемого здания
2.2 Генеральный план
2.3 Краткие сведения о технологическом процессе.
2.4 Объемно-планировочное решение
2.5 Конструктивная характеристика основных конструкций здания
2.6 Отделка здания
2.7 Инженерное оборудование здания
2.8 Технико- экономические показатели
Заключение
Список используемых источников

Раздел1:
Проектируемое здание «Кирпичный жилой дом с углом поворота 90гр» имеет простую конфигурацию в плане, с размерами в осях «1» - «7» – 21750 мм, «А» - «Л» –17250 мм.
В здании 5 этажей высотой – 3000 мм.
В здании присутствует подвал.
Для эвакуации принят главный вход.
Инженерное оборудование: холодное и горячее водоснабжение, канализация, отопление.
В основании здания – ленточный фундамент. Уровень земли составляет -0,925мм, глубина заложения фундамента под наружные и внутренние стены 1500мм. Подготовка под фундамент – щебеночная, толщиной 100мм.
Наружные стены здания из кирпича с теплоизоляционным материалом из пенополистирола.
Толщина наружной стены 610мм. Внутренние стены здания из кирпича, толщиной 380мм. Перегородки здания из кирпича, толщиной 120мм.
В проектируемом здании крыша плоская с уклоном 3"°" .
Состав кровли: рубемаст, диффузионная мембрана, пенополистирол 150мм, диффузионная мембрана, ЖБ плита перекрытия.
Технико-экономические показатели:
Площадь застройки – 393,34 "м2"
Строительный объем – 7020,33" м3"
Жилая площадь – 104,12" м2"
Общая площадь – 233,88" м3/м2"
Планировочный коэффициент – 0,45
Объемный коэффициент – 67,43

Раздел2:
Краткие сведения о технологическом процессе:
База производственно – технологической комплектации предназначена для выполнения следующих работ:
1. Приема, складирования, переработки, хранения, комплектации и отправления материалов, полуфабрикатов и изделий;
2. Изготовления опалубочных щитов и щитов подмостей, металлоконструкций, приспособлений, оснастки, арматуры и кровельных заготовок.
На территории предприятия разработаны вспомогательные здания и помещения такие как: медпункт, столовая, административное здание, пропускной пункт и место для курения.
Проектируемое здание «Главный корпус базы» имеет простую конфигурацию в плане, с размерами в осях «1» - «11» – 60000 мм, «А» - «П» –72000 мм.
Конструктивная система здания – каркасная с поперечным расположением ригелей. Шаг крайних и средних колонн составляет 6000 мм. В здании 4 пролета шириной 18000 мм. Высота от пола до ниж¬ней части элементов покрытия 7200 мм.
В основании здания – столбчатый фундамент. Уровень земли составляет -0,150 мм, глубина заложения фундамента под колонны 1500 мм. Подготовка под фундамент – бетонная, толщиной 100 мм.
Отметка верха колонн крайних и средних рядов 7,200. Колонны крайних рядов - сеч. 300 х 300 мм. Колонны среднего ряда - сеч. 400 х 400 мм.
В проектируемом здании используем железобетонные стропильные балки длиной 18000 мм. На стропильные балки опираются железобетонные ребристые плиты размером 6000 х 3000 мм.
Для стен принимаем железобетонные стеновые панели толщиной 300 мм.
Перегородки гипсобетонные толщиной 80 мм.
Инженерное оборудование здания:
Отопление: производственной части – воздушное, водяное с параметрами 150o - 70oС, административно-бытовых помещений – водяное с параметрами 105o - 70o.
Водопровод – производственный, хозяйственно противопожарный; напор на вводе – 20 м.
Канализация – раздельная; хозяйственно – фекальная, производственная и ливневая.
Вентиляция – приточно – вытяжная с механическим и естественным побуждением.
Горячее водоснабжение – от центрального теплового пункта, размещаемого при привязке проекта на промышленной площадке, от районной котельной или бойлерной промузла.
Электроснабжение – от низковольтных сетей напряжением 380/220В через комплектные трансформаторные подстанции.
Электроосвещение – газоразрядными лампами высокого и низкого давления и лампами накаливания.
Устройства связи – телефонизация, электочасофикации и радиофикации.
Технико- экономические показатели:
Площадь застройки – 4399,56 м2
Производственная площадь - 3580,364 м2
Строительный объем надземной части – 52926,71 м3
Планировочный коэффициент - 1
Объемный коэффициент – 14,78 м3/ м2
Дата добавления: 02.09.2022
КП 1160. Курсовой проект - Электроснабжение сельского населенного пункта | AutoCad

ВВЕДЕНИЕ
1 Расчет электрических нагрузок населенного пункта
2 Определение мощности и выбор трансформаторов
3 Электрический расчет воздушной линии напряжением 10 кВ
4 Составление таблицы отклонений напряжения
5 Электрический расчет воздушной линии напряжением 0,38 кВ
5.1 Расчет сечений проводов линии ВЛ1 по экономическим интервалам
5.2 Расчет проводов линии ВЛ2 по допустимой потере напряжения при постоянном сечении проводов в линии
5.3 Расчет проводов линии ВЛ3 на минимум проводникового материала
6 Конструктивное выполнение линий напряжением 0,38 кВ; 10 кВ и подстанции 10/0,38 кВ
7 Расчет токов короткого замыкания
8 Выбор оборудования подстанции ТП1
9 Технико-экономическая часть 43
ЗАКЛЮЧЕНИЕ 48
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ 49



Коровник привязного содержания с механизированным доением, уборкой навоза и электроводонагревателем на 100 коров


В процессе выполнения данного курсового проекта выполнен расчет электроснабжения заданного населенного пункта и сельского района на территории которого он расположен.
В первую очередь были определены величины дневных и вечерних нагрузок населенного пункта, они составили 317,78 кВА и 240,71 кВА, соответственно. Было принято решение об использовании двух однотрансформаторных КТП мощностью 160 кВА, определено точное место их монтажа.
Спроектирована распределительная сеть электроснабжения сельского района напряжением 10 кВ и населенного пункта - 0,38 кВ; определено сечение проводников воздушных линий, произведена их проверка по нагреву и потере напряжения. 
Выполнен расчет токов короткого замыкания, как многофазных, так и однофазных на землю. На их основании произведен выбор коммутационных аппаратов для трансформаторной подстанции.
В технико-экономической части курсового проекта определены капитальные затраты на монтаж сети электроснабжения сельского района, они составили 138,6 тыс. руб. Кроме того, была определена себестоимость электроэнергии для потребителей рассматриваемого населенного пункта.
 
Дата добавления: 13.09.2022
ДП 1161. Дипломная работа - Оценка тех. состояния мостового крана и определение его остаточного ресурса | AutoCad

Введение
1. Общие сведения об экспертизе промышленной безопасности
1.1 Организация и порядок проведения основных работ по экспертизе и обследованию ПТМ.
1.1.1 Предварительный этап проведения экспертизы.
1.1.2 Оперативная (функциональная) диагностика.
1.1.3 Экспертное обследование (экспертиза) крана.
1.2 Оценка остаточного ресурса.
1.2.1 Определение остаточного ресурса опасных производственных объектов. Общие положения.
1.2.2 Требования, предъявляемые при оценке технического состояния МК и механизмов ПТМ.
1.2.3 Оценка технического состояния крана.
2. Расчётная часть. Расчёт остаточного ресурса
2.1 Определение нагрузки на пролётную балку
2.2 Определение нагрузки от массы концевой балки
2.3 Определение моментов инерции и моментов сопротивления сечений балок
2.4 Расчёт концевой балки
2.5 Расчёт пролётных балок
2.6 Расчёт фактического режима работы крана, согласно ИСО 43/1
(ГОСТ 25546-82) и данные о фактических условиях эксплуатации крана
2.7 Расчёт остаточного ресурса мостового крана.
2.8 Вывод
3. Разработка технологического процесса изготовления зубчатого колеса.

В ходе определения остаточного ресурса мостового крана рег. № 54815, Q = 15 т пролетом 29,0 м, установлено следующее:
а) к моменту наступления назначенного срока эксплуатации классификационная группа (режим работы) крана будет соответствовать А7;
б) состояние механизмов - удовлетворительное.
в) коррозия расчетных элементов не превышает 5,0 %.
г) уровень технического обслуживания при эксплуатации крана - удовлетвори-тельный.
Было произведено ознакомление с нормативно-технической литературой по диагностированию и экспертизе промышленных опасных объектов и машин, рассчитан остаточный ресурс по критерию трещиностойкости металлоконструкции крана и представлен прогноз развития выявленных дефектов.

Исходные данные





Дата добавления: 25.12.2015
КП 1162. Курсовой проект (техникум) - Моторный участок | Компас






















Введение
1. Расчет производственной программы
2. Расчет годового фонда рабочего времени
3. Расчет количества ремонтных рабочих
4. Расчет количества постов в зонах ТО и ТР
5. Табель технологического оборудования
6. Табель технологической оснастки
7. Табель организационной оснастки
8. Расчет площади (зоны) участка
9. Схема технологического процесса
10. Схема организации труда рабочих
11. Функциональные обязанности каждого подразделения схемы организации труда рабочих
12. Организация ТО и ТР оборудования в зоне (участке)
13. Организация труда и отдых в зоне (участке)
14. Организация обучения ремонтных рабочих
15. Описание технологического процесса в зоне (участке)
16. Техника безопасности на участке
17. Охрана труда на участке
18. Пожаро безопасность на участке
19. Заземление на участке
Список литературы



Дата добавления: 17.09.2022
РП 1163. ЭС Модернизация средств измерений на подстанциях 35-750 кВ | AutoCad

В рамках подготовки объекта к модернизации СИ производится выполнение проектно-сметной документации на проведение комплекса работ:
по замене существующих средств измерений на новые, отвечающие требованиям ТЗ, с сохранением существующего месторасположения и мест отображения;
по программированию и настройке вновь устанавливаемых средств измерений;
по замене вторичных цепей от последней клеммной коробки до СИ; 
установке испытательных блоков и клеммных блоков для СИ с возможностью пломбирования и маркирования;
по прокладке и подключению цепей питания СИ;
по созданию автоматизированного сбора данных результатов измерений от вновь устанавливаемых СИ на рабочее место оперативно-диспетчерского персонала ПС (АРМ);
поставка необходимого комплекта оборудования и программного обеспечения для настройки средств измерений;
поставка необходимых средств поверки (калибровки);
поставка необходимого обменного фонда.


Со стороны высшего напряжения подстанция имеет связи по двум воздушным линиям электропередачи: ВЛ-220 кВ Кировская-1 и ВЛ-220 кВ Кировская-2. 
ОРУ-220 кВ выполнено по схеме «Две секции шин с межлинейной перемычкой без выключателя».
ОРУ-110 кВ выполнено по схеме «Две секционированные выключателем и обходной системой шин». 
ЗРУ-10 кВ выполнено по схеме «Одиночная система шин».
ЗРУ-6кВ выполнено по схеме «Четыре секции шин». Ко 2 секции подключен ТН НАМИ-10. К 1, 3 и 4 секциям- 3хЗНОЛП-10, ТСН-6/0,23.


Необходимо заменить средства измерений электрических и магнитных величин присоединений 220, 110, 10, 6, 0,4 кВ в количестве 81 штук;
Заменить вторичные цепи от последней клеммной коробки до СИ с установкой испытательного блока (испытательной коробки) для СИ;
 Проложить цепи питания СИ от стороннего источника питания;
 Предусмотреть поставку необходимых средств поверки (калибровки);
 Предусмотреть поставку необходимого обменного фонда;
 Предусмотреть поставку необходимых средств для обслуживания цифровых СИ (диагностики и переконфигурирования);
Предусмотреть организацию АРМ на рабочем месте оперативно-диспетчерского персонала ПС.
  Проложить цепи цифрового интерфейса RS-485 между СИ (электрических и магнитных величин) и АРМом;
 Проложить цепи цифрового интерфейса RS-485 между СИ (электрических и магнитных величин) и шкафов сбора данных (ШСД);
 Предусмотреть поставку АРМа в составе: персональный компьютер, коммуникационное оборудование, специализированное программное обеспечение, источник бесперебойного питания.


Структурная схема подключения информационных кабелей
Структурная схема размещения СИ
Раскладка кабелей
Расположение оборудования
Кабельный журнал
Схемы принципиальные электрические подключения СИ
Типовая структурная схема информационно-измерительного комплекса на ПС  
 
Дата добавления: 20.09.2022
КП 1164. Дипломный проект - Отопление жилого дома с подземной автостоянкой в г. Санкт-Петербург | AutoCad

Введение    3
1Общая часть    4
2Исходные данные для проектирования    4
3Сведения о климатических и метеорологических условиях района строительства, расчётных параметрах наружного воздуха    5
4Сведения об источниках теплоснабжения, параметрах теплоносителей систем отопления и вентиляции    6
5Параметры воздуха в помещениях    6
6Характеристика объекта проектирования    7
7Обоснование принятых систем и принципиальных решений по отоплению и индивидуальному тепловому пункту    8
7.1Отопление    8
7.2Индивидуальный тепловой пункт    14
8Сведения о тепловых нагрузках на отопление и вентиляцию, горячее водоснабжение на производственные и другие нужды    17
9Описание места расположения прибора учета используемой тепловой энергии и устройств сбора и передачи данных от таких приборов    17
10Описание систем автоматизации и диспетчеризации процесса регулирования отопления, вентиляции и кондиционирования воздуха    19
10.1Автоматизация теплового пункта    19
11Расчёты    21
11.1Расчет требуемых коэффициентов сопротивления теплопередачи    21
11.2Теплотехнический расчёт ограждающих конструкций.    22
11.3Определение нагрузки на систему отопления.    28
11.4Расчет теплопотерь здания    31
11.5Гидравлический и теплотехнический расчет системы отопления    52
11.6Подбор оборудования ИТП    64
11.Заключение    65
12.Список литературы    66


1. Общие данные
2. Отопление. План на отм. -3.500
3. Отопление. План на отм. 0.000. План на отм. +4.200
4. План типового этажа на отм. с +7.200 по +34.200. План на отм. +37.200
5. Схема системы отопления жилья
6. Схема системы отопления коммерческой зоны. Система системы отопления автостоянки. Узлы
7. Принципиальная схема ИТП. План ИТП (М1:40). Разрез А-А (М1:40). Разрез Б-Б (М1:40)


- здание в осях 1-13/А-Ж с размерами 71,35*21,45 м, Главный фасад направлен на Север;
- тип здания – монолитное, наружные стены выполнены из железобетона до отм. +4.200, с отм. +4.200 и выше, наружные стены выполнены из газобетона;
- отметка земли, относительно отм. 0.000 (пол первого этажа) находится на отм. -1.000;
- подземную автостоянку на отм. -3.500, находится в осях 1-12/А-Ж, отапливаемый объем – 2692 м3;
- встроенные помещения коммерческой зоны на отм. 0.000, находится в осях 2-13/Б-Е, отапливаемый объем – 1918 м3. Состоит из четырех помещений;
- жилые этажи 12 этажей, находятся в осях 2-13/Б-Е. Начиная с отм. +4.200. На жилых этажах располагаются студии, 1-к и 2-к квартиры, отапливаемый объем – 18170 м3.


Всего три системы отопления:
- система отопления жилья;
- система отопления коммерческой зоны;
- система отопления автостоянки.
Система отопления жилья:
Двухтрубная система отопления с попутным и тупиковым движением теплоносителя. Циркуляция теплоносителя – принудительное, с помощью насоса, установленного в ИТП. С параметрами теплоносителя – 90 °С /65 °С, теплоноситель – вода <3, прил. Б>.
Магистральные трубопроводы и стояки системы выполняются из труб стальных водогазопроводных по ГОСТ 3262-75 до Ду50 включительно и электросварных прямошовных по ГОСТ 10704-91 свыше Ду50. В качестве разводящий труб от поэтажного коллектора до отопительных приборов используются трубопроводы из молекулярно-сшитого полиэтилена с кислородным барьером фирмы Sanext. Трубопроводы из сшитого полиэтилена соединяются между собой с помощью латунных фитингов с надвижной гильзой (напрессовочные фитинги).
Разводка труб от этажного коллектора до отопительных приборов и разводка труб к отопительным приборам встроенных помещений осуществляется в стяжке пола.
Магистральные трубопроводы прокладываются открыто, под потолком автостоянки с уклоном 0,002, уклон в сторону ИТП в соответствии <3, п. 6.3.8>. Поквартирная разводка трубопроводов прокладывается без уклона в соответствии с <3, п. 6.3.9>.
В качестве тепловой изоляции магистральных трубопроводов и стояков применяются цилиндры навивные ROCKWOOL 100 из каменной ваты с покрытием алюминиевой фольгой, толщина изоляции – 30 мм. Разводящие трубопроводы от поэтажных коллекторов прокладываются в изоляции 6 мм и в защитной гофротрубе в соответствии с п. <3, п. 14.6>.
Компенсация тепловых удлинений происходит за счет углов поворота и осевых сильфонных компенсаторов.
При прокладке трубопроводов через строительные конструкции, трубопроводы прокладываются в металлической гильзе, зазор заделывается несгораемым материалом.
Перед монтажом изоляции, стальные трубы обрабатываются антикоррозионным покрытием – органической эмалью КО-8104 в 2 слоя.
Для гидравлической балансировки систем отопления на каждой ветке перед поэтажным коллектором на обратном трубопроводе установлен автоматический балансировочный клапана, на подающем – клапан-партнер <3, п. 6.2.12>. На ответвлениях с постоянным расходом устанавливаются ручные балансировочные клапана на обратном трубопроводе, запорный клапан – на подающем трубопроводе. 
Поэтажный коллектор включает в себя: ручные балансировочные клапана (устанавливаются на обратном трубопроводе для каждой квартиры), счетчик тепловой энергии, сливной кран, воздухоотводчик. На подающей подводке к коллектору устанавливается запорная арматура, фильтр, запорный клапан (является клапан-партнером для регулятора давления. На обратной подводке к коллектору устанавливается запорная арматура и регулятор давления.
Для компенсации тепловых потерь в жилых помещениях предусмотрены стальные панельные радиаторы PRADO с нижним подключением со встроенным термостатическим клапаном с предварительной настройкой RA-U фирмы «Danfoss». Радиатор подключается через клапан запорно-присоединительный RLV-KS. Для приборов с боковым подключением на подающих подводках устанавливается клапан-терморегулятор с предварительной настройкой RTR-N, на обратной – запорный клапан RLV. Во всех помещениях, вне квартир, настройка термостатического клапана блокируется блокировочным кольцом. Радиаторы в жилых помещениях устанавливаются под световыми проемами <3, п. 6.4.6>. В электрощитовой устанавливается электрический конвектор. В помещениях ванных с наружными стенами необходима установка полотенцесушителей с увеличенной поверхностью для компенсации тепловых потерь.
Радиаторы устанавливаются либо под световыми проемами, либо у наружных стен, если в помещениях нет световых проемов. Отопительные приборы на лестничных клетках устанавливаются в нижней части помещения <3, п. 6.4.9>. 
В жилых помещениях для каждого прибора закладывается термостатическая головка для радиаторного клапана типа RTR-7090 фирмы «Danfoss».
Удаление воздуха из системы отопления предусмотрено через воздухоспускные элементы на отопительных приборах и коллекторных узлах, а также через автоматические воздухоотводчики, установленные в верхних точках системы.
Слив предусмотрен через спускной кран, установленный на поэтажных коллекторах, в нижних точках стояка. Для того, чтобы слить ветки в полу системы отопления встроенных помещений необходимо выполнить следующие действия: перекрыть шаровые краны после счетчика, подключить компрессор к дренажному крану на подающем трубопроводе Т1.1, открыть дренажный кран на обратном трубопроводе Т1.2 и продуть. Затем подключить компрессор к дренажному крану на обратном трубопроводе Т1.2 и повторить действия. Произвести продувку системы в данной очередности 2-3 раза.
Система отопления коммерческой зоны:
Двухтрубная система отопления с попутным движением теплоносителя. Движение теплоносителя – принудительное, с помощью насоса, установленного в ИТП. Параметрами теплоносителя – 90 °С /65 °С, теплоноситель – вода. 
Магистральные трубопроводы и стояки системы выполняются из труб стальных электросварных прямошовных по водогазопроводных по ГОСТ 3262-75. В качестве разводящий труб, от ввода теплопроводов в помещения коммерческой зоны до отопительных приборов, используются трубопроводы из молегулярно-сшитого полиэтилена с кислородным барьером фирмы Sanext. Трубопроводы из сшитого полиэтилена соединяются между собой с помощью латунных фитингов с надвижной гильзой (напрессовочные фитинги).
В качестве тепловой изоляции магистральных трубопроводов и стояков применяются цилиндры навивные ROCKWOOL 100 из каменной ваты с покрытием алюминиевой фольгой, толщина изоляции – 30 мм. Трубопроводы из сшитого полиэтилена прокладываются в защитной гофре.
Магистральные трубопроводы прокладываются под потолком автостоянки с уклоном 0,002, уклон в сторону ИТП в соответствии <3, п. 6.3.8>. Поквартирная разводка трубопроводов прокладывается в стяжке пола без уклона в соответствии с <3, п. 6.3.9>.
Компенсация тепловых удлинений происходит за счет углов поворота и осевых сильфонных компенсаторов.
При прокладке трубопроводов через строительные конструкции, трубопроводы прокладываются в металлической гильзе, зазор заделывается несгораемым материалом.
Перед монтажом изоляции, стальные трубы обрабатываются антикоррозионным покрытием – органической эмалью КО-8104 в 2 слоя.
Для каждого коммерческого помещения предусматриваются: регулятор давления (устанавливается на обратном трубопроводе) с клапан-партнером (устанавливается на подающем трубопроводе), счетчик тепловой энергии, фильтр и запорную арматуру.
Для компенсации тепловых потерь в коммерческой зоне предусмотрены стальные панельные радиаторы PRADO с нижним подключением и со встроенным термостатическим клапаном с предварительной настройкой RA-U фирмы Danfoss. Радиатор подключается через клапан запорно-присоединительный RLV-KS.
Радиаторы устанавливаются под световыми проемами.
Удаление воздуха из системы отопления предусмотрено через воздухоспускные элементы на отопительных приборах, а также в узлах учета тепловой энергии для каждого коммерческого помещения.
Слив предусмотрен через спускной кран, установленный на поэтажных коллекторах, в нижних точках стояка. Для того, чтобы слить ветки в полу системы отопления встроенных помещений необходимо выполнить следующие действия: перекрыть шаровые краны после счетчика, подключить компрессор к дренажному крану на подающем трубопроводе Т1.1, открыть дренажный кран на обратном трубопроводе Т1.2 и продуть. Затем подключить компрессор к дренажному крану на обратном трубопроводе Т1.2 и повторить действия. Произвести продувку системы в данной очередности 2-3 раза


Двухтрубная система отопления с тупиковым движением теплоносителя. Движение теплоносителя – принудительное, с помощью насоса, установленного в ИТП. Параметрами теплоносителя – 90 °С /65 °С, теплоноситель – вода.
Магистральные трубопроводы выполняются из труб стальных электросварных прямошовных по ГОСТ 10704-91. Подающий трубопровод прокладывается под потолком автостоянки, обратный трубопровод – по полу. В качестве тепловой изоляции магистральных трубопроводов и стояков применяются цилиндры навивные ROCKWOOL 100 из каменной ваты с покрытием алюминиевой фольгой, толщина изоляции – 30 мм. 
Компенсация тепловых удлинений происходит за счет углов поворота.
Перед монтажом изоляции, стальные трубы обрабатываются антикоррозионным покрытием – органической эмалью КО-8104 в 2 слоя.
Для компенсации тепловых потерь применяются регистры из гладких труб. На подающем трубопроводе устанавливается термостатический клапан с предварительной настройкой RTR-N, на обратном трубопроводе устанавливается запорный кран RLV.
Слив предусмотрен через спускной кран, установленный на регистр из гладких труб или в ИТП.
Перед монтажом изоляции, стальные трубы обрабатываются антикоррозионным покрытием – органической эмалью КО-8104 в 2 слоя
После монтажа и гидравлических испытаний систем отопления, необходимо установить настройки термостатических клапанов с предварительной настройкой в проектное положение, согласно чертежам данной ВКР.
Для настройка термостатических клапанов необходимо:
- снять защитный колпачок;
- поднять кольцо настройки;
- повернуть шкалу кольца так, чтобы нужное значение оказалось напротив установочной метки;
- отпустить кольцо настройки.
Когда настройка завершена, устанавливается термостатический элемент RTR-7090. Термостатические элементы монтируются на клапанах с помощью клипсового соединения. Термостатические элементы устанавливаются в горизонтальном положении. Когда термостатический элемент смонтирован, то предварительная настройка оказывается спрятанной и таким образом защищенной от неавторизованного изменения. 


Индивидуальный тепловой пункт (ИТП) предназначен для присоединения систем теплопотребления здания к тепловой сети. В ИТП предусматривается размещение оборудования, арматуры, приборов контроля, управления и автоматизации, посредством которых осуществляется: преобразование и контроль параметров теплоносителя, регулирование расхода теплоносителя и распределение его по системам потребления теплоты, отключение упомянутых систем, учёт тепловых потоков и расходов теплоносителя.
Тепловой пункт является встроенным в здание и располагается в отдельном помещении на отметке -3.500. Высота помещения – 3,2 м. Дверь из теплового пункта открывается от себя непосредственно наружу.
Узел присоединения к теплосети:
Узел состоит из вводной стальной запорной арматуры, фильтров, контрольно-измерительных приборов и оборудования узла учета тепловой энергии. Теплосчетчик на базе тепловычислителя и электромагнитных расходомеров обслуживает один теплообменный контур, обеспечивая при этом измерение тепловой энергии, объема, массы, расхода, давления, температуры и разности температур. На обратном трубопроводе (Т2) теплосети перед узлом учета устанавливается регулятор перепада давления. Регулятор снижает избыточное давление в тепловой сети и обеспечивает постоянство разницы давлений теплоносителя, поступающего к системам потребления теплоты, между подающим (Т1) и обратным (Т2) трубопроводами.
Узел присоединения системы отопления:
Система отопления присоединяется к тепловой сети (ТС) по независимой схеме <7, п.3.3>. Изменение температуры теплоносителя, поступающего в систему отопления (СО), осуществляется путём увеличения или уменьшения величины расхода из ТС в первичном контуре теплообменного аппарата (ТО). Циркуляция теплоносителя через первичный контур ТО происходит за счет перепада давления между подающим и обратным трубопроводами ТС (располагаемого напора) и изменяется посредством двухходового клапана с электроприводом, установленного на обратном трубопроводе ТС. 
Теплообменник стальной разборный, материал прокладок – EPDM, материал пластин – AISI 30.
Циркуляция теплоносителя в системе отопления осуществляется двумя циркуляционными насосами (из которых один - резервный), установленными на обратном трубопроводе вторичного контура СО перед ТО. Насосы малошумящие, производительность каждого из них равна расчётной производительности по теплоносителю СО. Перед насосами по ходу теплоносителя устанавливается сетчатый фильтр, подлежащий чистке в период подготовки к отопительному сезону или при необходимости. На каждой системе отопления устанавливаются тепловычислители.
Подпитка СО осуществляется из тепловой сети, для чего на трубопроводе подпитки устанавливается электромагнитный нормально закрытый клапан. Открытие клапана происходит при понижении давления в обратном трубопроводе СО, закрытие — при достижении необходимого давления, для чего на обратном трубопроводе вторичного контура СО устанавливается датчик давления. Для компенсации теплового расширения теплоносителя и поддержания оптимального давления в замкнутой системе отопления применен мембранный расширительный бак. 
На обратных трубопроводах систем отопления, сводящихся в единый коллектор, устанавливаются балансировочные краны марки MNF фирмы «Danfoss», позволяющие произвести увязку гидравлических потерь в этой системе. Данные краны допускают использование в качестве запорной арматуры.
В качестве контрольно-измерительных приборов применяются технические манометры (с пределом измерений 0...10 кгс/см²) и показывающие биметаллические термометры (0 ° С...+120 °С).
В высших точках трубопроводов установлены автоматические воздухоотводчики.
Узел присоединения систем теплоснабжения вентиляции
Системы теплоснабжения присоединяются к тепловой сети по независимой схеме. Изменение параметров теплоносителя не требуется.
Горячее водоснабжение:
Система ГВС здания присоединяется к тепловой сети по закрытой схеме. Система ГВС запроектирована по кольцевой схеме, с циркуляционным трубопроводом. Приготовление воды на горячее водоснабжение осуществляется посредством нагрева холодной водопроводной воды по одноступенчатой схеме в теплообменном аппарате, рассчитанном на тепловую нагрузку, покрывающую максимальный часовой расход теплоты на нужды ГВС. 
Для защиты системы ГВС от взвешенных частиц, находящихся в воде, устанавливаются сетчатые фильтры с магнитными вставками.
В качестве контрольно-измерительных приборов применяются технические манометры (с пределом измерений 0...10 кгс/см²) и показывающие биметаллические термометры (0 °С...+120 °С).
Система «слив-промывка»:
Осуществляет функции по сливу воды из внутренних систем здания и промывки трубопроводов и оборудования данных систем. Спускные краны предусмотрены на коллекторах системы отопления и на каждом подающем и обратном трубопроводе систем отопления, а также в низших точках систем.
Для стока воды полы в тепловом пункте спроектированы с уклоном 0,01 в сторону водосборного приямка, с размерами 0,5*0,5*0,8 м <7, п. 2.27>.
Конструктивные решения подключения систем ГВС и вентиляции приведены условно, в данной работе не разрабатываются.


В выпускной квалификационной работе была запроектирована система отопления для поддержания оптимальных условий микроклимата в помещениях. Для этого была запроектирована двухтрубная система водяного отопления с нижней разводкой.
Были подобраны:
•Стальные панельные радиаторы PRADO Uiversal – с встроенным термостатическим вентилем Ra-U фирмы Danfoss;
•Стальные панельные радиаторы PRADO – с боковым подключением;
•Терморегулирующие клапана RTR-N для бокового подключения радиаторов и регистров, фирмы Danfoss;
•Запроектирована ИТП с погодным регулированием;
•Подобрано теплообменник, запорная и регулирующая арматура для ИТП.


 



Дата добавления: 21.09.2022
РП 1165. ГСН Установка узла учета расхода газа шкафного типа на г.в.д. (P<0,6МПа) DN200 | AutoCad

Присоединение (места врезок) проектируемого ПУРГ-2500-ЭК предусмотрено в подземный газопровод высокого давления (Р≤0,6МПа) DN200  с установкой на врезках контрольных трубок полевого типа. На  выходе из земли перед  газопроводе высокого давления к ПУРГ-2500-ЭК предусмотрена установка ИФС DN200.
Проектом предусматривается прокладка газопровода высокого давления, продувочного газопровода из стальных электросварных труб Ø219х5,0,  Ø25х2,0,  по ГОСТ 10704-91, гр. В, марки стали 10 по ГОСТ 1050-2013, установка ПУРГ  на фундаменте в ограждении. 
Для проектируемого ПУРГ-2500-ЭК требуется отвод земли под строительство,  строительно - монтажные работы по установке оборудования на распределительном газопроводе высокого давления предусмотрены в районе ул.__________.
Способ прокладки газопровода – подземный, на глубине существующего газопровода (уточнить по месту) и надземный на высоте h =1,80 м и h =2,20 м.
Глубина заложения подземного газопровода – 2,0м (уточнить по месту).
Для удобства обслуживания узел для учета расхода газа  расположен на высоте h= 0,15м на раме. 
Продувочный газопровод ПУРГ-2500-ЭК выведен на высоту 4,0 м от поверхности земли и присоединен к контуру заземления. 
Для проектируемого узла учета ПУРГ-2500-ЭК предусмотрена молниезащита, молниеотвод запроектирован в пределах ограждения.
Для защиты подземного газопровода высокого давления предусмотрена изоляция типа «Усиленная» по ГОСТ 9.602-2016. Для стыков подземного газо-провода предусмотрены манжеты термоусаживающиеся DN200.
Электрохимическая защита подземных участков предусмотрена от действующей катодной станции. На подземном газопроводе предусмотрена шунтирующая перемычка из полосовой стали Б2 40х4 мм длиной 2,5м.
Защита надземного газопровода высокого давления от атмосферной коррозии предусмотрена лакокрасочными покрытиями, состоящими из двух слоев грунтовки и двух слоев лака, краски или эмали (желтого цвета), предназначенных для наружных работ при расчетной температуре наружного воздуха в районе строительства -32°С.
                   
Учет расхода газа, соответствующего требованиям ГОСТ 5542 и приведенного к стандартным условиям предусмотрен  в соответствии с ГОСТ Р 8.740-2011. «Национальный стандарт Российской Федерации. Государственная система обеспечения единства измерений. Расход и количество газа. Методика измерений с помощью турбинных, ротационных и вихревых расходомеров и счетчиков». Установка счетчика газа TRZ G1600  предусмотрена для учета расхода объема газа используемого на индивидуально-бытовые нужды населения и коммунально-бытовых потребителей п. Залесный Кировского МР г. Казани, РТ.
Установка узла учета расхода газа предусмотрена на распределительном газопроводе высокого давления (Р≤0,6МПа) DN200. Конструкция счетчика газа позволяет эксплуатацию его при температуре окружающей среды -35˚С. 
Давление газа в газопроводе составляет: максимальное - 0,6МПа, минимальное -  0,3МПа. Диапазон измерения расхода газа при стандартных условиях  счетчиком газа TRZ G1600 составляет:  максимальный - 16000 нм3/час, минимальный – 320,0 нм3/час. Счетчик газа оснащен электронным корректором ЕК-270. Питание ЕК-270 – автономное, осуществляется от двух литиевых бата-рей со сроком службы 5 лет.
Место установки счетчика газа TRZ G1600 предусмотрено, исходя из условий:
-  место установки должно быть наименее подвержено вибрации, защищено от воздействия ударов, атмосферных осадков, прямых солнечных лучей и удобно для осмотра и обслуживания;
-  длина прямолинейного участка газопровода должна быть до счетчика не менее 5Dу и после не менее 3Dу.
Узел учета расхода газа ПУРГ-2500-ЭК  шкафного типа с утеплением, без обогрева, во взрывозащищенном исполнении, с турбинным счетчиком TRZ G1600. Шкаф представляет собой рамную сварную конструкцию, утепленную обшитую снаружи стальными листами размером 3600х1850х2050(h).
Для очистки газа от механических примесей в ПУРГ предусмотрена установка фильтра газового сетчатого ФГм-200 с ДСП-80-16кПа.
Для измерения перепада давления газа  на счетчике предусмотрена установка показывающего индикатора перепада давления ППД. Для контроля давления газа до счетчика предусмотрена установка показывающего манометра.          
                    
Общие данные.
Спецификация. Функциональная схема. Габаритные размеры ПУРГ. 
Генплан участка М1:500. Ситуационный план.
План площадки РС-2 М 1:50.  Пространственная схема газоснабжения.
Схема расположения фундаментов (М 1:50)
Фундамент Ф-1, Свая Св-1, Ростверк Р-1, Каркас Кс-1, Кр-1, Сеч 1-1, 2-2, Закладная детальЗд-1
Схема расположения площадки и  ПУРГ-2500-ЭК
Спецификация ограждения. Элементы ограждения
Заземление и молниезащита ПУРГ


 
Дата добавления: 25.09.2022
КП 1166. Курсовой проект - Производственное и вспомогательное здания промышленного предприятия в г. Челябинск | AutoCad

1.Введение
2.Основные объемно-планировочные решения
3.Генеральный план
4.Основные конструктивные решения
3.1.Фундаменты и фундаментные балки
3.2.Стены
3.3.Окна, двери, ворота
3.4.Полы
3.5.Отделка внутренняя и наружная
3.6.Крыша и фонарь промышленного здания
5.Расчет административно-бытовых помещений
6.Теплотехнический расчет ограждающих конструкций
7.Светотехнический расчет
8.Расчет водостока



Фундаментые балки: ширина у основания стены 0.3м,с последующим сужением до 0.25 м, высота балки 0.5 м, в курсовом проекте используется такое сечение фундаментной балки разной длины:.Под фундаментную балку кладётся ж/б столбик 0.25x0,9 м.
Стены промышленного  здания выполнены из навесных легкобетонных трехслойных панелей, толщина которых 300мм. Трехслойная панель состоит из керамзитобетона плотностью 1400 кг/м3 и толщиной 100 и 80мм, утеплитель – минеральная вата толщиной 100 мм и штукатурки толщиной 20 мм.
Стены административно-конторского и бытового здания выполнены из навесных легкобетонных трехслойных панелей, толщина которых 300мм. Трехслойная панель состоит из керамзитобетона плотностью 1400 кг/м3 и толщиной 100 и 80мм, утеплитель – минеральная вата толщиной 100 мм и штукатурки толщиной 20 мм. Внутренние  перегородки из панелей толщиной в  80мм. Перегородки из одинарных панелей со звукоизоляционным слоем.
Размеры окон промышленного здания 4.5x12.6 м, так-же есть окна размерами 4.5x8.9;4.5x5.3м,и окна в санитарных узлах размерами 4.5x0.9м.Заполнение проемов ворот: металлические раздвижные ворота. Створки ворот крепятся к железобетонным рамам. 
В цехе предусмотрены цементные полы. Состав: бетонное покрытие с армированием - 45 мм марка бетона B-30, бетонное покрытие с армированием - 45 мм марка бетона B-25 , уплотненный грунт пропитанный битумом.
Для промышленного здания принимаем железобетонные ребристые плиты для покрытий длиной 6м и шириной 3 м. Торцовые поперечные ребра плит снабжены вутами, обеспечивающими жесткость контура. Толщина полки 30 мм.
Кровля малоуклонная с уклоном 1.5 градуса, такой уклон обеспечивает сток воды к водоприемникам. 
Дата добавления: 25.09.2022
КП 1167. Курсовой проект - 12-ти этажный жилой дом 54,60 х 13,05 м в г. Тула | AutoCad

Введение
Исходные данные для проектирования
Объемно-планировочное решение
Конструктивное решение:
Конструктивная схема
Конструкция наружных стен
Конструкция внутренних стен
Конструкция перегородок
Конструкция окон, наружных и внутренних дверей
Конструкция перекрытий
Конструкция фундаментов
Конструкция крыши
Расчеты:
Теплотехнический расчет ограждающих конструкций
Упрощенный расчёт звукоизоляции межквартирной перегородки
Упрощенный сбор нагрузок на фундамент, расчет фундамента
Заключение
Список использованных источников


На первом этаже находится вестибюльная группа, включающая в себя вестибюль с местом для размещения почтовых ящиков, помещение консьержа, оборудованное санузлом, кладовой уборочного инвентаря, так же помещения общественного назначения.
На типовом этаже в одной секции располагается три квартиры: одна двухкомнатная, одна трехкомнатная, одна четырёхкомнатная. Квартиры запроектированы в соответствии с требованиями СНиП. Предусмотрен единый планировочный принцип зонирования и комфортности. Каждая квартира имеет спальню, отдельную кухню и санузел. Также каждая квартира имеет две или более лоджии, выход на которые осуществляется не только через жилую комнату, но и через кухню.
Передвижение из квартир осуществляется по межквартирным коридорам шириной 1600 мм. В коридорах предусмотрены общедомовая система вентиляции нежилой зоны и пожарные шкафы. Для эвакуации в проекте предусмотрена одна незадымляемая лестница, выход на которые осуществляется непосредственно через незадымляемую лоджию. Также в здании запроектирован лифтовой узел, состоящий из двух лифтов (пассажирский, грузоподъемностью 630 кг и грузовой, грузоподъемностью 400 кг ). В проекте лифтовые шахты принимаются в виде монолитных железобетонных конструкций с толщиной стенки 200 мм.
В рамках проекта предусмотрен мусоропровод для централизованного мусороудаления из здания. Диаметр ствола составляет 500 мм.
 
Назначение объемно-планировочного решения здания ведется с учетом его конструктивной схемы. Конструктивная схема проектируемого здания каркасная монолитная с полным каркасом, при этом жесткость и устойчивость обеспечивается системой пилонов, которые вместе с горизонтальными элементами (безбалочная монолитная плита) образуют каркас.
Наружные стены здания выше отм.0.000 являются трехслойными. В местах, где проходит пилон, стена состоит из: внутреннего слоя – пенобетон с толщиной слоя 200 мм; среднего слоя – жесткого минераловатного утеплителя толщиной 100 мм; облицовочного слоя – керамический кирпич толщиной 120 мм. В местах между пилонами, где проходит керамический камень, стена состоит из: облицовочного слоя - керамического кирпича толщиной 120 мм, слоя утеплителя – минераловатной плиты толщиной 100 мм и внутреннего слоя – керамического камня толщиной 200 мм. В облицовочном слое проложена металлическая сетка. Металлическая сетка соединяется с конструктивным слоем при помощи гибких связей.
Основными несущими элементами здания являются пилоны, монолитные из бетона В20 в пролетах толщиной 200 мм. Между пилонов кладется газосиликатный блок на цементно - песчаном растворе М100 соответствующей толщины.
В помещениях с повышенной влажностью перегородки выполнены из керамического кирпича толщиной 120 мм.
Окна – поливинлхлоридные с двойным остеклением. 
Дверные блоки внутренние изготовлены по ГОСТ 6629-88, балконные по ГОСТ 16289-86. 
Перекрытия здания - монолитные, толщиной 200 мм, обеспечивающие общую жесткость каркаса и перераспределение нагрузки между рамами. По характеру работы перекрытие является плитой, опертой по контуру.
Фундамент здания –монолитный толщиной 1000 мм. Глубина заложения фундамента принята - 3.65 м, что ниже глубины промерзания грунтов. Наружные стены подвала приняты монолитные железобетонные толщиной 300 мм. Для защиты подвального этажа от проникновения влаги внутрь стены с наружной стороны оклеены гидроизолом марки ГИ-Г ГОСТ 7415-86Несущей основой данного покрытия является монолитная железобетонная плита. Вентиляция кровли осуществляется через вентиляционные отверстия в продольных стенах здания. Внутреннее водоотведение производится через водоприемные воронки.
Дата добавления: 26.09.2022
КП 1168. Курсовой проект - 2-х этажный жилой дом 18,227 х 12,025 м в г. Брянск | AutoCad

1. План благоустройства территории    3
2. Архитектурно-строительная часть гражданского здания    4
2.1 Характеристика гражданского здания    4
2.2 Конструктивное решение гражданского здания    4
2.3 Фундаменты    5
2.4 Стены и перегородки    5
2.5 Покрытия    6
2.6 Крыша, кровля    7
2.7 Окна, двери    7
2.8 Лестница    8
2.9 Полы    8
2.10 Наружная и внутренняя отделка помещений    8
2.11 Инженерное оборудование    8
Список использованных источников    9


Класс здания – 2, степень огнестойкости – II и долговечности – 2. Помещения в здании обеспечены необходимой инсоляцией и проветриванием. Проветривание обеспечивается через окна. В санитарных узлах и на кухнях расположены устройства вытяжной вентиляции с принудительной тягой непосредственно из помещения.
По №123 ФЗ (29.07.2017) по функциональной пожарной опасности – класс Ф 3.1
По №123 ФЗ (29.07.2017) степень огнестойкости – II
По №123 ФЗ (29.07.2017) класс ответственности здания –II.


В соответствии с заданием на курсовое проектирование был разработан перечень конструктивных решений. В проектируемом здании были реализованы следующие конструктивные решения:
-фундаменты под наружные стены сборные бетонные фундаментные
блоки по монолитному фундаменту;
-наружные стены выполнены толщиной 570 мм;
-конструкции покрытия – сборное покрытие и плоская кровля;
 -перегородки из силикатного кирпича.
Необходимая устойчивость, прочность пространственной схемы здания обеспечена совместной работой стен из кирпича глиняного полнотелого.
В проектируемом здании - монолитный фундамент под наружными несущими стенам и под колонны.
Наружные несущие стены толщиной 570 мм выполнены из кирпича на цементно-песчаном растворе М-100. Кладка II категории с расчетным сопротивлением Rp = 120 кПа. Внутренний и наружный ряды – обыкновенный (рядовой) кирпич. Снаружи и внутри стены штукатурятся цементно-песчаным раствором. Толщина наружного (декоративного) слоя штукатурки составляет 15 мм, внутреннего – 20 мм. Снаружи по слою штукатурки осуществляется цветная побелка. 
Внутренние несущие стены толщиной 400 мм выполнены из обыкновенного (рядового) кирпича на цементно-песчаном растворе М-100. Кладка II категории с расчетным сопротивлением Rp = 120 кПа. 
Перегородки толщиной 120 мм выполнены из обыкновенного (рядового) кирпича на цементно-песчаном растворе М-100. 
Покрытия и перекрытия запроектировано из сборного железобетона. Сборное перекрытие выполняется из бетона марки М-300. 
Крыша плоская, совмещенная с внутренним организованным водоотводом. Покрытие кровли выполнить из слоя битумно-полимерной мастики.
Утепление кровли предусматривается из плит минераловатных П-75 ГОСТ 9573-96. 
Лестница монолитная двух маршевая с одной лестничной площадкой из бетона В-25, расположена в холле. Ограждение лестничных маршей кованое металлическое высотой 1200 мм.
Дата добавления: 29.09.2022
КП 1169. Курсовой проект - Электроснабжение населенного пункта | Компас

Введение    3
1. Электроснабжение населенного пункта    5
1.1 Исходные данные    5
1.2 Определение центра электрических нагрузок, числа трансформаторных подстанций    6
1.3 Расчёт электрических нагрузок в сетях 0.38 кВ    8
1.4 Выбор мощности комплектной трансформаторной подстанции.    10
1.5 Выбор сечения и проводов линий    12
1.6 Определение потерь напряжения    13
1.7 Определение потерь энергии    16
2 Электрические сети района    23
2.1 Цель разработки. Исходные данные    23
2.2 Определение центра электрических нагрузок    24
2.3 Расчет электрических нагрузок.    25
2.4 Выбор сечения и проводов линий    27
2.5 Определение потерь напряжения.    28
2.6 Определение потерь энергии.    29
3 Расчет токов короткого замыкания    32
3.1 Схема замещения сети и ее преобразования    32
3.2 Токи трехфазного короткого замыкания.    36
3.3 Токи двухфазного короткого замыкания.    36
3.4 Ударные токи короткого замыкания.    37
3.5 Расчет токов однофазного короткого замыкания.    37
4 Выбор аппаратуры защиты подстанций    39
4.1 Выбор автоматических выключателей    39
4.2 Выбор высоковольтных предохранителей    42
5. Расчёт заземляющих устройств трансформаторной подстанции напряжением 10/0,4 кВ    43
Заключение    46
Список литературы    47




В данном курсовом проекте выполнен расчет электроснабжения населенного пункта и электрических сетей района. Найдены расчетные нагрузки, на шинах ТП, которые составили для ТП 1 160 кВА, для ТП2 160 кВА,  выбраны две трансформаторных подстанций, мощностью 2500  кВА, определено сечение проводов. В населенном пункте применены провода СИП сечением от 25 мм2 до 35 мм2, потери напряжения при этом по линиям составили от 1,77 % до 4,08% и энергии до 4,06%. Все рассчитанные данные снесены в таблицы, произведен расчет токов короткого замыкания, выбор и проверка аппаратуры защиты. Результаты выбора представлены на листе № 3 графического материала.
 



Дата добавления: 06.10.2022
КП 1170. Курсовой проект - Система газоснабжения населенного пункта г. Белгород | AutoCad

1 ИСХОДНЫЕ ДАННЫЕ
2 РАСЧЁТ ГАЗОПОТРЕБЛЕНИЯ
2.1 Определение численности населения
2.2 Определение параметров газа
2.3 Определение расхода газа на коммунально-бытовые нужды
2.3.1 Определение годового расхода газа на коммунально-бытовые нужды
2.3.2 Определение часового расхода газа на коммунально-бытовые нужды
2.4 Опрeдeлeниe расхода газа на нужды теплоснабжения
2.4.1 Опрeдeлeниe часового расхода газа на нужды теплоснабжения
2.4.2 Опрeдeлeниe годового расхода газа на нужды теплоснабжения
2.5 Опрeдeлeниe расхода газа на нужды промышленных предприятий
2.5.1 Определение годового расход газа на нужды промышленных предприятий
2.5.2 Опрeдeлeниe часового расхода газа на нужды промышленных предприятий
3 РЕЖИМ ГАЗОПОТРЕБЛЕНИЯ
3.1 Неравномерность газопотребления
3.1.1 Сeзонная неравномерность газопотребления
3.1.2 Часовая неравномерность газопотребления
3.2 Расчетный расход газа
4 СИСТЕМА ГАЗОСНАБЖЕНИЯ
4.1 Выбор, обоснование и конструирование газопровода
4.1.1 Определение числа ГРС
4.1.2. Определение количества ступеней давлений в распределительных газопроводах
4.1.3 Выбор структурной схемы газовых сетей
4.1.4 Выбор варианта подключения сосредоточенных потребителей к газовым сетям.
4.2 Определение оптимального числа газорегуляторных пунктов
4.3 Трубы и соединительные детали
5 ГИДРАВЛИЧЕСКИЙ РАСЧЁТ ГАЗОПРОВОДА
5.1 Общие положения гидравлического расчёта
5.2 Гидравлический расчёт сети высокого (среднего) давления
6 СПИСОК ЛИТEРАТУРЫ

ИСХОДНЫЕ ДАННЫЕ
Проект газового кольца высокого давления II категории разрабатывается для г. Белгород. Территориально город разделен на два типа кварталов с различной этажностью застройки: кварталы с малоэтажной застройкой (1-2 эт.); кварталы с многоэтажной застройкой (3-9 эт.).
В кварталах с малоэтажной застройкой имеется водопровод и канализация. Теплоснабжение общественных зданий предусмотрено централизованное, а индивидуального жилого фонда – от автономных источников тепла.
В квартирах установлены газовые плиты и газовые проточные водонагреватели. Кварталы с многоэтажной застройкой полностью благоустроены. В кухнях квартир установлены только газовые плиты для приготовления пищи. Теплоснабжение кварталов - централизованное от ТЭЦ и районных отопительных котельных. Население района города Белгород пользуется всеми видами коммунально-бытовых услуг. В каждом виде кварталов имеются бани, прачечные, учебные, детские и лечебные заведения.
Приняты следующие климатические условия для города Белгород:
1) расчётная температура наружного воздуха для проектирования систем отопления tр.о. =-24 ℃;
2) расчётная температура для проектирования систем вентиляции tр.в.=-12 ℃;
3) средняя температура наружного воздуха за отопительный период tо=-1,9 ℃;
4) продолжительность отопительного периода nо = 187 суток.
Годовой расход газа промышленными предприятиями:




Охват населения коммунально-бытовыми услугами:













ЗАКЛЮЧЕНИЕ
В качестве заключения выполняется гидравлический расчёт сети высокого (среднего) давления
Газовые сети высокого давления являются верхним иерархическим уровнем городской системы газоснабжения. Для средних и больших городов их проектируют кольцевыми, и только для малых городов они могут выполняться в виде разветвлённых тупиковых сетей.
Расчётный перепад для сетей высокого давления определяют исходя из следующих соображений. Начальное давление принимают максимальным, конечное давление принимают таким, чтобы при максимальной нагрузке сети было обеспечено минимально допустимое давление газа перед регуляторами. Величина этого давления складывается из максимального давления газа перед горелками, перепада давлений в абонентском ответвлении при максимальной нагрузке и перепада в ПРГ. В большинстве случаев перед ПРГ достаточно иметь избыточное давление примерно 0,15 - 0,2 МПа.
При расчёте кольцевых сетей необходимо оставлять резерв давления для увеличения пропускной способности системы при аварийных гидравлических режимах. Принятый резерв следует проверять расчётом при возникновении наиболее неблагоприятных аварийных ситуаций. Такие режимы обычно возникают при выключении головных участков сети. Для многокольцевой сети неблагоприятных режимов, которые необходимо проверить расчётом, может быть несколько.
Ввиду кратковременности аварийных ситуаций следует допускать снижение качества системы при отказах её элементов. Снижение качества оценивают коэффициентом обеспеченности, Коб, который зависит от категории потребителей.
Сети высокого (среднего) давления являются управляемыми, к ним присоединяют ограниченное число крупных потребителей, режимом подачи газа которых управляет диспетчерская служба. Следствием управляемости сети является и особая постановка задачи расчёта аварийного гидравлического режима, заключающегося в том, что не только в расчётном режиме, но и в аварийных ситуациях узловые расходы газа являются заданными. Это положение позволяет вести расчёт аварийных режимов теми же методами, какими определяют диаметр газопроводов при расчётном режиме. Отличие состоит лишь в том, что меняется геометрия сети: выключают один или несколько элементов и уменьшают узловые нагрузки в соответствии с принятыми Коб. Возможное уменьшение подачи газа ограничено нижним пределом, который устанавливают из соображений минимально допустимого давления газа перед приборами. Это минимальное давление определяется минимальной нагрузкой, которую принимают равной 50% расчётного значения. Половину нормы газообразного топлива будут получать примерно 20-30% потребителей, причём такое снижение подачи топлива существенно не отразится на приготовлении пищи. В основном это будет отражаться на качестве горячего водоснабжения. Как показывают исследования, при снижении давления после ПРГ можно уменьшить максимальный расход примерно на 15-20%.
Следовательно, для коммунально-бытовых потребителей, присоединённых к сети низкого давления, коэффициент обеспеченности, Коб, можно принять равным 0,8-0,85. Учитывая кратковременность аварийных ситуаций и теплоаккумулирующую способность зданий, можно сократить подачу газа на отопительные цели, Коб для отопительных котельных можно принимать равным 0,7-0,75.
Значение Коб для промышленных предприятий определяют из следующих соображений. Если предприятие имеет резервную систему снабжения топливом, то Коб = 0. При её отсутствии допустимое сокращение подачи газа зависит от сокращения подачи теплоты на отопительные цели. Для технологических нужд сокращать подачу газа не следует. Таким образом, коэффициент Коб можно определить для всех сосредоточенных потребителей и на их основе рассчитать аварийные гидравлические режимы. После обоснования коэффициентов обеспеченности для всех потребителей решают вторую задачу, то есть определяют необходимый резерв пропускной способности сети.
Для однокольцевого газопровода аварийных режимов, подлежащих расчёту при выключении головных участков слева и справа от точки питания.
Так как при выключении головных участков однокольцевой газопровод превращается в тупиковый, то диаметр кольца можно определить из расчёта аварийного гидравлического режима при лимитированном газоснабжении для тупиковой линии. Рекомендуется следующий порядок расчёта однокольцевой газовой сети высокого (среднего) давления:
1. Давление газа на выходе из ГРС принимается по заданию. Давление перед конечными потребителями (ПРГ) принимается равным минимально допустимому для данной ступени давления как абсолютное значение, Рк = 0,3 МПа.
Намечаем направление движения газа по сети и определяем резервирующую перемычку – это будет участок, лежащий на противоположном конце кольца относительно ГРС.
2. Определяем, по возможности, равновеликий диаметр кольца в зависимости от расчётного расхода, и среднеквадратичной потери давления газа,
Целесообразно принимать постоянный диаметр кольца. Если такой диаметр подобрать не удастся, то участки газопроводов, расположенные диаметрально противоположно точке питания, следует прокладывать меньшего диаметра, но не менее чем 0,75 диаметра головного участка.
3. Рассчитывают аварийные режимы при выключенном головном участке справа, затем слева от начальной точки конца. Стремление использовать весь перепад давления в обоих режимах требует корректировки первоначально принятых диаметров по кольцу.
Изменение диаметров (увеличение протяжённости большего или меньшего их значения) в одном режиме требует внесения изменения во втором режиме и наоборот. В результате этого расчёта диаметры по кольцу принимаются окончательно.
4. Затем считают нормальный режим при уже известных диаметрах по кольцу и снабжении газом всех потребителей на 100 %. В результате расчёта нормального режима определяют резерв давления в точке встречи потоков, минимально необходимый для нормального снабжения газом всех потребителей при самых сложных аварийных ситуациях, а также давления в каждой точке подключения потребителей, что позволяет разрабатывать проект газоснабжения каждого из них.
5. По завершении расчёта конечных давлений во всех узловых точках кольца проверяется увязка потерь давления в полукольцах (от точки разветвления до точки схода потоков).
В результате расчёта кольца, исходя из предварительного распределения потоков, определяем невязку, δ, %, в кольце
Невязка по давлению при расчёте нормального режима не должна превышать 10%. Если данное условие не соблюдается, то вводим круговой поправочный расход, "м" ^"3" /ч.
В соответствии с методом Якоби поправочный расход, ΔQк, "м" ^"3" /ч,
Затем вычитаем круговой поправочный расход с перегруженной ветви и прибавляем к расходам на противоположной ветви тот же круговой поправочный расход.
При известном диаметре и новых расходах определяем потери давления на каждом участке. После чего определяем невязку заново по формуле.

В итоге был выполнен окончательный расчет нормального режима с ошибкой для кольца - 0,62%

Дата добавления: 08.10.2022


© Rundex 1.2
 
Cloudim - онлайн консультант для сайта бесплатно.