Добавить проект
Прочитать правила
Платный доступ
Авторизация:
Информация


%20%20%20%20%20%20

Найдено совпадений - 1375 за 0.00 сек.


КП 616. Курсовой проект - Ресайклинг дорожной одежды. Устройство верхнего слоя покрытия из Щебеночно-мастичного асфальтобетона (ЩМА-20) на ПБВ 90 | АutoCad
1 Определение сроков строительства 2
1.1 Дорожно-климатический график 3
1.2 Определение календарной продолжительности строительного сезона 4
1.3 Определение сроков выполнения работ и расчет минимальной длины сменной захватки 5
2 Технология по ресайклингу дорожной одежды 6
2.1 Ресайклер WirtgenWR4200 6
2.2 Определение длины сменнойзахватки 7
2.3 Расчет производительности машин для ресайклинга существующего покрытия 8
3 Устройство верхнего слоя из ЩМА-20 на ПБВ 90 20
3.1 Полимерно-битумное вяжущее 20
3.2 Определение длины сменнойзахватки 21
3.3 Расчет материалов устройства дорожной одежды 22
3.4 Расчет производительности машин 23
для устройства дорожнойодежды 23
4 Устройство обочин ЧЩС на щебеночном основании 27
4.1 Определение длины сменнойзахватки 27
4.2 Расчет материалов устройства дорожной одежды 28
4.3 Расчет производительности машин 28
для устройства дорожнойодежды 28
5 Разработка линейного календарного графика 35
Список литературы 37

Курсовой проект включает в себя описание района строительства, подбор необходимого ресайклера, расчет технологии по ресайклингу дорожной одежды с последующей укладкой щебеночно-мастичного асфальтобетона (ЩМА-20) на полимерно-битумном вяжущем (ПБВ 90), устройство обочин согласно категории, а также составление и разработка линейного календарного графика. На линейном календарном графике в общем случае должны быть отражены: объемы работ, подлежащие выполнению в течение планируемого периода, с разбивкой их по конструктивным элементам и распределением по километрам (пикетам); время выполнения работ; движение специализированных подразделений или отдельных бригад и звеньев, работающих в составе комплексных или специализированных потоков.

Исходными данными для курсового проекта являются:
1б категория автодороги
Район строительства Тверская область
Ресайклинг производить на 15 см
Слой ЩМА-20 на ПБВ 90 - 6 см
Дата добавления: 06.06.2019
РП 617. ГСВ Котельная 5,7 МВт | АutoCad

Расход газа на котел "RIELLO",RTQ-2000 мощностью 2000 кВт при работе в номинальном режиме составляет 235,12 нм³/час (при рабочих условиях 195,94 м³/час) и расход газа на котел "RIELLO",RTQ-1700 мощностью 1700 кВт составляет 199,85 нм³/ч (при рабочих условиях 166,55 м³/час)


Общие данные.
Схема газопроводов. М 1:20.
План на отм. 0.000. М 1:50.
Разрез 1-1. М1:50.
Разрез 2-2. М1:50.
Разрез 3-3. М1:50.
Разрез 4-4. М1:50.
Дата добавления: 06.06.2019
РП 618. АК Комплексная автоматизация автостоянки | AutoCad

- автоматически, при срабатывании спринклеров.
- дистанционно, от сигналов ручных извещателей устанавливаемых на путях эвакуации.
- вручную, от кнопок расположенных в местах установки клапанов.
Во время возникновения пожара одновременно с включением системы противодымной защиты, система общеобменной вентиляции автоматически выключается и блокируется от включения на время работы системы противодымной защиты.
Система построена с использованием следующего оборудования: контроллеры двух-проводной линии связи С2000-КДЛ контрольно-пусковой блоки С2000-КПБ, кнопочных постов ПКЕ-212, пульт контроля и управления С2000-М.
Для бесперебойного электропитания приборов системы автоматизации дымоудале-ния: С2000-КДЛ, С2000-КПБ, С2000-ПИ применен источник бесперебойного питания РИП-24 с емкостью 7 и 17А/ч.

Общие данные.
Структурная схема автоматизации.
Функциональная схема автоматизации. Приточная вентсистема П1, П2.
Схема внешних соединений Приточная вентсистема П1, П2.
Принципиальная схема управления вентилятором СД1
Принципиальная схема управления вентилятором В1
Схема прибора Сигнал-20П, С2000-4, ШКП-4.
Схема внешних соединений оборудования автоматизации. Бокс N2
Схема внешних соединений газоанализатора
План на отм. +0,000. Сети автоматизации
Дата добавления: 12.06.2019
КП 619. Курсовой проект - Электроснабжение машиностроительного завода | АutoCad

ВВЕДЕНИЕ 4
1 ОСНОВНАЯ ЧАСТЬ 7
1.1 Характеристика предприятия и его электроприемников 7
1.2 Расчет электрических нагрузок. Картограмма. ЦЭН 7
1.3 Выбор напряжения электроснабжения 16
1.4 Выбор количества и мощности трансформаторов цеховых подстанций 18
1.5 Компенсация реактивной мощности на предприятии 20
1.6 Выбор мощности трансформаторов ГПП 23
1.7 Выбор схемы электроснабжения предприятия 24
1.8 Расчет токов короткого замыкания 25
1.9 Выбор и проверка оборудования на ГПП (ЦРП) 27
1.10 Выбор сечения проводников питающих и распределительных сетей 36
1.11 Выбор элементов силовой сети цеха 39
ЗАКЛЮЧЕНИЕ 43
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 44
 


Данный завод является энергоёмким производством и предъявляет высокие требования к качеству электроэнергии. Завод включает в себя 14 цехов. В компрессорной установлено четыре синхронных двигателя на напряжение 10 кВ.
Основными потребителями в большинстве цехов являются электроприемники 2-3 категории надёжности электроснабжения, отключения которых может привести к нарушению технологического цикла и массовому недоотпуску продукции. Имеются также потребители 2 категории надёжности электроснабжения и 3 категории надёжности энергоснабжения. Большую часть электроприемников в цехах составляют электроприводы производственных механизмов и металлообрабатывающих станков, общепромышленных механизмов насосов, компрессоров, вентиляторов.

Электрические нагрузки машиностроительного завода:






При разработке системы электроснабжения машиностроительного завода были учтены все факторы, влияющие на расчеты электроснабжения предприятия.
На начальном этапе проектирования системы электроснабжения определены электрические нагрузки штамповочного участка №14 и по предприятию в целом, осуществлен выбор рационального напряжения сети.
Выбор места расположения ГПП произведён с учетом распределения нагрузок потребителей, наглядно представленного на картограмме. Число и мощность трансформаторов ГПП приняты исходя из категории надежности электроснабжения и расчетной мощности предприятия.
На основании результатов расчёта номинального и послеаварийного режимов, токов короткого замыкания и сравнения полученных данных с каталожными произведён выбор и проверка оборудования на ГПП. Произведён выбор трансформаторных подстанций, установленных в производственных цехах, а также рассчитаны и выбраны компенсирующие устройства. Произведён расчёт и выбор силовой сети и аппаратов штамповочного участка.
Выбор сечений кабельных линий проверен в послеаварийном режиме и уточнен расчетом на термическую стойкость к токам КЗ.
Курсовая работа была разработана с учетом требований надежности электроснабжения, экономичности, максимального снижения потерь электроэнергии.
В курсовой работе был произведен расчет системы электроснабжения машиностроительного завода с учётом требований надёжности электроснабжения, максимального снижения потерь электроэнергии. Предлагаемая схема электроснабжения способна передавать к потребителям электроэнергию.
Дата добавления: 13.06.2019
КП 620. Курсовой проект - Электроснабжение завода метизов | АutoCad

1 ОСНОВНАЯ ЧАСТЬ 4
1.1 Характеристика предприятия и его электроприемников 4
1.2 Расчет электрических нагрузок 5
1.3 Выбор напряжения электроснабжения 14
1.4 Выбор количества и мощности трансформаторов цеховых подстанций 15
1.5 Компенсация реактивной мощности 17
1.6 Выбор мощности трансформаторов ГПП 19
1.7 Выбор схемы электроснабжения предприятия 20
1.8 Расчет токов короткого замыкания 21
1.9 Выбор и проверка оборудования на ГПП 27
1.10 Расчет силовой сети 36
1.11 Автоматическое включение резерва 39
ЗАКЛЮЧЕНИЕ 45
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 46

Исходные данные для проектирования
- электрические нагрузки завода;
- электрические нагрузки модельного цеха;
- генплан завода;
- план модельного цеха;
- сведения об источнике питания;
 


Наибольшую установленную мощность оборудования имеют следующие цеха завода: инструментальный цех - 700 кВт, термический цех - 800 кВт, механический цех - 887 кВт.
На предприятии есть цеха в которых часть оборудования относится ко II категории ЭС – котельная, насосная и термический цех.
Высоковольтные электроприемники на заводе отсутствуют.
Цеха основного производства а так же насосная, компрессорная и котельная работают по трехсменному графику работы, остальные цеха по односменному.
В модельном цехе установлено следующее деревообрабатывающее оборудование: лесопильная рама, электрорубанок, ВЧ установка для сушки древесины, циркулярные пилы, фуговальный и шипорезный станки, для заточки режущего инструмента (пил, дисков, ножей) в модельном цехе имеется заточной станок. Все оборудование цеха размещается согласно технологической последовательности обработки. При размещении оборудования учтены нормы расстояния для безопасных перемещений деталей и самих рабочих в процессе работы.
Окружающая среда в большинстве цехов предприятия и на территории завода - нормальная; в термическом цехе – пыльная, жаркая; в деревомодельном и модельном цехах, а так же в котельной – пыльная пожароопасная класс П-IIа.

Электрические нагрузки завода метизов:





При расчёте схемы электроснабжения завода метизов были учтены все факторы, влияющие на расчёты электроснабжения предприятия.
Выбор напряжения электроснабжения завода метизов был сделан с учетом расчетной нагрузки предприятия и его удаленности от источника питания.
Выбор места и расположения ГПП был сделан с учётом картограммы нагрузок потребителей. Число и мощность трансформаторов определялось категорией надежности и расчётной мощностью предприятия с учетом компенсации реактивной мощности на предприятии.
Выбор сечений кабельных линий был проведён по экономической плотности тока, проверен на термическую стойкость и уточнен расчётом на термическую стойкость к токам короткого замыкания.
Произвёл расчет и выбор конструктивного исполнения цеховой сети цеха токарных станков.
Курсовой проект был разработан с учётом требований надёжности электроснабжения, экономичности, максимального снижения потерь электроэнергии. Предлагаемая схема электроснабжения способна передавать к потребителям электроэнергию требуемого качества и в необходимом количестве.
Дата добавления: 13.06.2019
КП 621. Курсовой проект - Проектирование городской улицы в г. Белгород | АutoCad

ВВЕДЕНИЕ 2
1 Общая характеристика района проектирования дороги 3
1.1 Климатические характеристика района проектирования 3
1.2 Рельеф местности 5
2 Обоснование технических нормативов проектируемой автомобильной дороги 5
3 Определение технических характеристик проектируемых улиц 7
4 Проектирование поперечных профилей основной и пересекаемой улиц, определении ширины улиц в "красных линиях" 13
5 Проектирование плана и продольного профиля основной и пересекаемой улиц 14
5.1 Проектирование плана улиц 14
5.2 Проектирование продольного профиля улиц 15
6 Разработка вертикальной планировки пересечения 17
7 Определение объёмов земляных работ на перекрёстке методом "картограмм" 19
8 Назначение конструкции дорожной одежды 24
ЗАКЛЮЧЕНИЕ 35
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ 36

Исходные данные для проектирования
1. Топографический план участка города в горизонталях с планом улично-дорожной сети в масштабе 1:10 000 (приложение 1).
2. Район проектирование – г. Белгород, Белгородская область.
3. Данные о грунтовых условиях:




6. Основная улица Прохладная.
7. Пересекаемая улица Ненастная.
8. Состав транспортного потока и интенсивность движения:








10. Интенсивность движения пешеходов 3,0 тыс. чел/ч.
11. Инженерные сети: водопровод, теплоснабжение, кабели (слаботочные, сильных токов, осветительные).
12. Тип покрытия дорожной одежды проезжей части проектируемой улицы монолитный цементобетон.

ЗАКЛЮЧЕНИЕ
В данной курсовой работе на тему «Проектирование городской улицы» была запроектирована магистральная улица непрерывного движения.
Был выбран оптимальное размещение автомобильной дороги исходя безопасности движения и экономического соображения, запроектирована вертикальная планировка и выполнен расчет объема земляного полотна методом картограмм. Была подобрана конструкция жесткой дорожной одежды с учетом сроком службы на 25 лет.
Дата добавления: 17.06.2019
РП 622. ПБ Горно-обогатительный комбинат по добыче и обогащению калийных солей мощностью 2,3 млн. т/год в Волгоградской области | AutoCad

Структура системы
В состав системы входит оборудование, которое по выполняемым функциям можно сгруп-пировать:
Группа 1:
- Программно-аппаратный комплекс на базе ЭВМ с программным обеспечением (в здании станционном (только мониторинг);
- Пульты контроля и управления «С-2000-М»;
- Повторители/ преобразователи интерфейса RS-485/232 «С-2000-ПИ»;
- Преобразователь интерфейса RS-485/232 в Ethernet «С-2000-Ehernet»;
- Сетевые коммутаторы (учтены в разделе «устройства связи).
Группа 2:
- Приборы приемно-контрольные и управления «С-2000-АСПТ»;
- Блоки контроля и индикации «С-2000-БКИ»;
- Блоки индикации «С-2000-БИ»;
- Блоки индикации и управления пожаротушением «С-2000-ПТ»
- Блоки сигнально-пусковые «С-2000-СП1 исп.1»;
- Блоки реле адресные «С-2000-СП2»;
- Блоки сигнально-пусковые адресные «С-2000-СП4/220»;
- Контрольно-пусковые блоки «С-2000-КПБ».
Группа 3:
- Контроллеры двухпроводной линии связи «С-2000-КДЛ».
Первая группа предназначена для построения верхнего уровня интерфейса управления сложной распределённой системой, использующей древовидную топологию интерфейса. Головным устройством станционного оборудования является пульт контроля и управления «С-2000-М» предусмотренные на каждом объекте. На посту с круглосуточным пребыванием обслуживающего персонала в станционном здании пом.226 проектом предусматривается вывод тревожных сигна-лов на пульт контроля и управления «С-2000-М» - «главный пульт мониторинга» (существую-щий), на который поступает информация о состоянии установок автоматической пожарной сигнализации каждого из объектов. Связь с постом охраны организованна следующим образом - при наступлении опасного фактора пожара на объекте приемно-контрольное оборудование регистрирует данное событие, и по магистрали RS-485 передает тревожные сигналы на объ-ектовые пульты контроля и управления «С-2000-М», с помощью преобразователей интерфейса RS-485/232 в Ethernet «С-2000-Ehernet», используя локально-вычислительную сеть (см.ххх), сигналы «пожар» и «неисправность» при помощи блоков сигнально-пусковых «С-2000-СП1 исп.1». Блоки индикации «С-2000-БИ» на посту охраны отображают состояние объектовых установок пожарной сигнализации. На посту охраны предусмотрен программно-аппаратный комплекс на базе ЭВМ с программным обеспечением «Орион-ПРО», также позволяющий выполнять монито-ринг состояния систем;
Вторая группа приборов предназначена для обеспечения функций управления, отобра-жения состояния разделов системы, управления исполнительными устройствами. Устройства этой группы не обладают возможностью автономной работы и предназначены для функциони-рования только в составе системы под управлением пульта контроля и управления «С-2000-М».
К третьей группе относятся приборы, имеющие кольцевые шлейфы сигнализации и предусмотренные на каждом объекте, оснащенном системой пожарной сигнализации в соответ-ствии с Техническими требованиями.
Максимальное количество адресных устройств, включенных в линию ДПЛС принято с уче-том 10% резерва емкости адресного пространства контроллера, т.е. не превышает 113 адресов.
Для управления исполнительными устройствами при пожаре проектом предусматриваются:
- Блоки сигнально-пусковые «С-2000-СП1 исп.1»;
- Блоки реле адресные «С-2000-СП2»;
- Контрольно-пусковые блоки «С-2000-КПБ».
В качестве извещателей автоматической пожарной сигнализации используются:
- извещатель пожарный дымовой адресный "ДИП-34А-03";
- извещатель пожарный тепловой адресный "С-2000-ИП-03
- извещатель пожарный пламени адресный "C-2000-Спектрон-607";
- извещатель пожарный ручной адресный "ИПР 513-3АM исп.01";
- извещатель пожарный ручной адресный "C-2000-Спектрон-512-Ex-M-ИПР";
- кнопка ручного пуска системы пожаротушения адресная «ЭДУ 513-3АM»;
- извещатель охранный магнито-контактный адресный "С-2000-АР1 с ИО 102-20";
- извещатель охранный магнито-контактный "ИО102-32 «ПОЛЮС-2»".
В соответствии с п. 14.2 СП 5.13130.2009 в защищаемых помещениях предусмотрена уста-новка не менее двух автоматических пожарных извещателей. Точное количество автоматиче-ских пожарных извещателей определено исходя из необходимости обнаружения загораний на контролируемой площади помещений (зон контроля) и средней площади, контролируемой одним извещателем, с учетом архитектурных особенностей помещений.
Выбор типов пожарных извещателей в зависимости от назначения защищаемого помеще-ния и вида пожарной нагрузки производится согласно таблицы М.1 Приложения М СП 5.13130.2009
В помещениях расстояние между точечными дымовыми извещателями принято на основа-нии п. 13.4 по таблице 13.3 СП 5.13130.2009.
Расстояние между точечными тепловыми извещателями принято на основании п. 13.6 по таблице 13.5 СП 5.13130.2009.
Расстояние для извещателей пламени принято на основании п. 13.8 СП 5.13130.2009.
Расстояние между автоматическими извещателями в помещениях, где предусматривается запуск установки автоматического пожаротушения от сигнала формируемым АПС, принято с учетом требований п. 14.1 СП 5.13130.2009.
Оборудование пространства над подвесными потолками пожарными извещателями обу-словлено требованием п.11.2 СП 5.13130.2009 (Приложение А).
В проекте предусмотрена установка ручных пожарных извещателей «ИПР 513-3АМ исп.01», со встроенным разветвительно-изолирующим блоком (БРИЗ) на лестничных клетках и выходах из помещений на высоте 1.5м. от уровня пола. Расстояние между ручными извещателя-ми не превышает 50 м по каждому направлению эвакуации. Снаружи здания предусмотрена установка извещателей ручных пожарных адресных "C-2000-Спектрон-512-Ex-M-ИПР";
Ручные пожарные извещатели установлены в местах, удалённых от электромагнитов, постоянных магнитов, и других устройств, воздействие которых может вызвать самопроиз-вольное срабатывание ручного пожарного извещателя.
Блок разветвительно-изолирующий "БРИЗ" предназначен для использования в двухпро-водной линии связи контроллера "С-2000-КДЛ" с целью изолирования короткозамкнутых участ-ков с последующим автоматическим восстановлением после снятия короткого замыкания.
Адресно-аналоговые пожарные извещатели ДИП-34А-03, С-2000-ИП-03, ИПР 513-3АМ исп.01, ЭДУ 513-3АM, C-2000-Спектрон-512-Ex-M-ИПР, С-2000-АР1 с ИО 102-20, блоки разветви-тельно-изолирующие "БРИЗ", , блоки реле адресные «С-2000-СП2» подключаются с помощью двухпроводной линии связи к контроллеру ДПЛС «С-2000-КДЛ».
Кабельные линии системы противопожарной защиты выполняется по ГОСТ Р МЭК 60332-3-22 с низким дымо- и газовыделением (нг-FRHF) различного сечения.
Дата добавления: 21.06.2019
ДП 623. Дипломный проект - Модернизация узла подвески и механизма ствола вертлюга УВ - 320 в условиях ООО "Роскомсевер" | Компас

Рассмотрены существующие конструкции буровых вертлюгов, проведен обзор и анализ научно-технической информации и патентов по ним. Выявлено, что наиболее подверженными износу являются посадочные поверхности ствола и отверстия штропа вертлюга. В процессе работы вертлюга на посадочных поверхностях образуются мелкие дефекты, которые с течением времени разрастаются всё интенсивнее. Рассмотрены современные технологии ремонта и восстановления работоспособности деталей. Восстановление рабочих поверхностей ствола вертлюга осуществляется методом наплавки и последующей механической обработки. Технологические маршруты восстановления ствола и пальцев вертлюга представлены в графической части и пояснительной записке.
Рассмотрены вопросы БЖД , экологичности проекта и экономическая эффективность.

СОДЕРЖАНИЕ
ВВЕДЕНИЕ 7
1 ИЗНОС, РАБОТОСПОСОБНОСТЬ, РЕМОНТОПРИГОДНОСТЬ 9
1.1 Основные виды и причины износа деталей бурового оборудования 9
1.2 Факторы, влияющие на износ бурового оборудования 16
1.3 Методы повышения износостойкости деталей 17
1.4 Вертлюг УВ-320 как объект ремонта 26
2 ОРГАНИЗАЦИЯ ОБСЛУЖИВАНИЯ БУРОВОГО ОБОРУДОВАНИЯ 39
2.1 Основные положения планово-предупредительного ремонта 39
2.2 Основные ремонтные нормативы 42
2.3 Планирование ремонта бурового оборудования 47
3 ПАТЕНТНО-ИНФОРМАЦИОННЫЙ ПОИСК 55
4 ТЕХНИЧЕСКОЕ ПРЕДЛОЖЕНИЕ 63
5 РАСЧЕТ ЭЛЕМЕНТОВ ВЕРТЛЮГА УВ-320 66
5.1 Расчет ствола вертлюга 66
5.2 Расчет штропа 70
5.3 Расчет пальца штропа 74
5.4 Расчет внутренней трубы вертлюга 75
5.5 Расчёт припусков на механическую обработку 76
6 ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ 80
6.1 Общие сведения 80
6.2 Разработка технологических операций 83
6.3 Изготовление технологических маршрутов 84
7 ЭКОНОМИЧЕСКАЯ ЧАСТЬ 87
7.1 Расчет стоимости 87
7.2 Энергетические затраты 90
7.3 Экономическая эффективность 91
8 БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ПРОЕКТА 95
8.1 Недостатки базовой конструкции по обеспечению безопасности труда 95
8.2 Обеспечение безопасности труда на проектируемом оборудовании 96
8.3 Санитарные требования, к помещению или открытой производственной площадки для размещения, проектируемого оборудования 97
8.4 Травмобезопасность проектируемого объекта 105
8.5 Безопасность и защита в чрезвычайных ситуациях 108
8.6 Экологичность проекта 115
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 118

1) Схема расположения оборудования БУ-5000 БД – 1л. А1.
2) Схема циркуляции бурового раствора – 1л. А1.
3),4) Патентный поиск – 2л. А1.
5) Сборочный чертеж вертлюг УВ-320 – 1л. А1.
6), 7) Деталировка – 2л А1.
8) Технологический маршрут ремонта пальца вертлюга УВ-320
9) Технологический маршрут ремонта ствола вертлюга УВ-320

Технические характеристики вертлюга УВ-320:
1. Допустимая (максимальная) нагрузка, кН. 3200
2. Динамическая нагрузка, кН. 1450
3. Максимальное давление прокачиваемой жидкости (раствора) в стволе, МПа 32
4. Габаритные размеры, мм
высота с переводником и колпачком 3130
ширина по пальцам штропа 1110
5. Отклонение штопа возможно в пределах, градусы 30
6. Масса, кг 2980

Заключение
Проблема повышения работоспособности узлов и агрегатов буровых установок актуальна для совершенствования технологических процессов нефтяных и газовых промыслов.
Для решения проблемы повышения надежности и долговечности быстроизнашивающихся деталей узлов и агрегатов оборудования нефтегазовых промыслов, проведен анализ особенностей эксплуатации вертлюга на примере УВ-320, дефектов и неисправностей его деталей и узлов.
Разработано технологическое предложение по ремонту деталей вертлюга УВ-320 на примере ствола и пальцев, соединяющих штроп с корпусом, а также их последующей модернизации с целью увеличения ресурса и облегчения процесса разборки в дальнейшем.
Разработана схема технологические маршруты ремонта ствола и пальцев вертлюга УВ-320.
Проведена оценка безопасности и жизведеятельности проекта.
Выполнен технико-экономический анализ эффективности разработки дипломного проекта.
Дата добавления: 23.06.2019
ДП 624. Дипломный проект - Модернизация буровой установки БУ 5000/320 | Kомпас

В дипломном проекте разработана упрощенная версия буровой лебедки. Новая конструкция не исчерпывает себя и является перспективной для внедрения в производство, а так же дает возможность и дальше вести работу в данном направлении.
Найденные технические решения обоснованы расчётами. В результате проведения мероприятия по замене буровой лебедки в составе спускоподъемного комплекса БУ 5000/320 ЭК-БМЧ на основе существующей модели буровой лебедки JC50DB путем установки электродвигателя отечественного производства частотно-регулируемый типа AFD423MA6 , была получена прибыль 1856148 руб, а кроме того снижена масса агрегата по сравнению с базовой моделью на13120кг. Таким образом, представленный проект является экономически выгодным и рекомендуется для реализации на промыслах Западной и Восточной Сибири .

Содержание
Введение
1.Анализ конструкций буровых установок отечественного и зарубежного производства
1.1 Буровая установка ООО «Уралмаш НГО Холдинг» БУ 5000/320 ЭК-БМЧ
1.2 Буровая установка ООО «Хунхуа СНГ» ZJ 70 DBS
1.3 Сравнительная характеристика применяемого оборудования в составе основных комплексов буровой установки
1.3.1 Буровые лебедки JC 50DB и ЛБУ-1500 ЭТ-3
1.3.2 Ротор ZP 375(К.Н.Р.) и Р-950(«Уралмаш»)
1.3.3 Силовой верхний привод «NOV»TDS-11SA
1.3.4 Буровой насос 3NB-1300F(К.Н.Р) и УНБТ-1180(«Уралмаш»)
2.Патентная проработка существующих полезных моделей буровых лебедок
2.1Патент № 2083795 Лебедка буровой установки
2.2Патент №123058 Буровая лебедка
2.3Патент№89093Буровая лебедка…
2.4Патент №134982 Лебедка буровой установки
3.Техническое предложение
3.1Обоснование применения модели буровой лебедки JC50DB«Хунхуа СНГ» в составе БУ 5000/320 ЭК-БМЧ
3.2 Общие характеристики и функциональное описание электродвигателя AFD 423MA6 завода «Кранрос»
4.Расчетная часть
4.1Выбор силового привода
4.2 Тяговая характеристика проектируемой лебедки
4.3 Расчет бочки барабана
5.Безопасность и экологичность проекта
5.1 Анализ опасных и вредных производственных факторов
5.2 Обязанности по обеспечению безопасных условий и охраны труда
5.3 Производственная санитария
5.4 Безопасность работ при спуско-подъемных операциях
5.5 Безопасность и защита в чрезвычайных ситуациях
5.6 Экологичность проекта
6.Экономическая часть
6.1 Расчет капитальных вложений на модернизацию буровой лебедки
6.2 Затраты на приобретение материалов и комплектующих изделий
6.3 Транспортные затраты
6.4 Затраты на монтаж оборудования
6.5 Определение экономической эффективности модернизации спуско-подъемного комплекса буровой установки БУ 5000/320 ЭК-БМЧ
Заключение
Список использованных источников


1. Вышка                                                                                      А - образная, секционная, оборудованная                                                                                                                    маршевыми  лестницами и эвакуатором для                                                                                                                верхового рабочего                                                   2. Полезная высота буровой вышки, м                                                                            45
3. Номинальная длина свечи, м                                                                                     25 
4. Допускаемая скорость ветра, м/с 
 - (ветровые районы Iа, I, II, III СНИП 2. 01. 07-85 Приложение 4)                                                _ 
 - в рабочем состоянии при нагрузке до 320 т                                                                20 
 - в нерабочем состоянии (с установленной на подсвечниках бурильной колонной)                       25
5. Система верхнего привода                                                                                   TDS-11 SA
6. Статическая грузоподъемность, кН                                                                          3200 
7. Максимальная скорость вращения ствола, с (об/мин)                                                   3,33 (200) 
8. Максимальное давление прокачиваемой жидкости, мПа                                                     25 
9. Стояк манифольда 0140х12                                                                                     одинарный
10. Основание                                                                                                   блочное разборное
11. Отметка пола буровой от уровня земли, м                                                                   9,89 
12. Суммарная площадь подсвечников, м2                                                                        6,22 
13. Расстояние от уровня земли до низа подроторных балок 
(просвет для установки превенторов), м                                                                         7,1
14. Просвет, обеспечиваемый при съезде со скважины на кусте, м                              3,62 
15. Диаметр бурильных труб, мм                                                    114; 127; 147
16. Диаметр талевого каната, мм                                                    32
17. Скорость подъема крюка, м/с                                                    0,0 . . . 1,6
18. Длина квадрата, м                                                            27+1,0
19. Обеспечиваемый метод бурения скважин - кустовой


1 Габаритные размеры (длина х ширина х высота)              6000мм. х3000мм. х2546мм.   
2 Максимальная входная мощность                                1260kW;
3 Максимальное усилие разрыву ходового каната              350kN;
4 Диаметр каната                                                   35мм;
5 Число передач                                                     Бесступенчатое;
6 Главный тормоз                                                   Рекуперативный с теплопоглащением;
7 Фиксирующий (вспомогательный) тормоз                     S80 гидравлический дисковый;
8 Номинальное давление гидролинии дискового тормоза       8 МПа

Заключение
В результате выполненных работ и исследований проведена замена буровой лебедки в составе БУ 5000/320 новой лебедкой на основе существующей модели JC50DB и установки в качестве силового привода электродвигатели переменного тока типа АFD423MA6. В результате стоимость предлагаемой буровой лебедки снижена на 2820000 руб. по сравнению с базовой (экономия 29%). Кроме того, достигнуто уменьшение массы проектируемой лебедки на 13200кг. (что составляет 32% от веса первоначальной модели, равного 40620 кг). Общий экономический эффект составил 1856148 руб.
Дата добавления: 23.06.2019
ДП 625. Дипломный проект - Модернизация буровой установки БУ3900/225-ЭЧК-БМ с целью повышения надежности трансмиссии | Компас

В дипломном проекте разработана упрощенная версия буровой лебёдки Б484.02.02.000 Волгоградского завода буровой техники. Новая конструкция не исчерпывает себя и является перспективной для внедрения в производство, а так же дает возможность и дальше вести работу в данном направлении.
Найденные технические решения обоснованы расчётами. В результате проведения мероприятия по усовершенствованию буровой лебедки путем упрощения коробки передач и замены ленточного тормоза на дисковый получена прибыль 295000 руб, а кроме того снижена масса насосного агрегата на 2829 кг. Таким образом, представленный проект является экономически выгодным и рекомендуется для реализации на промыслах Красноярского края и России.

СОДЕРЖАНИЕ
Введение 9
1. Буровые установки 13
1.1. Общие сведения о буровых установках .13
1.2. Буровые установки волгоградского завода буровой техники. 27
1.3. Буровая установка БУ3900/225-ЭЧК-БМ 30
2. Буровые лебедки 34
2.1. Общие сведения о буровых лебедках .34
2.2. Анализ конструкций буровых лебедок отечественного производства… 36
2.3. Анализ конструкций буровых лебедок зарубежного производства 41
2.4. Описание лебедочного блока484.02.02.00044
2.5. Дисковый тормоз буровой лебедки .45
2.5.1. Конструкция, принцип работы 45
2.5.2. Монтаж дискового тормоза 47
2.5.3. Наладка 48
2.5.4. Обслуживание и уход 52
3. Патентно – информационный обзор 55
3.1. Патент на изобретение №2385283 55
3.2. Патент на изобретение №2360862 58
3.3. Патент на изобретение №2279753 59
3.4. Патент на изобретение №2352833 .63
3.5. Патент на изобретение №2400419 70
4. Техническое предложение 78
5. Расчетная часть 79
5.1. Выбор двигателей и расчет силовых передач 79
5.2. Расчет основных параметров лебедки 80
5.3. Расчет тяговой характеристики лебедки 83
5.4. Расчет тормоза буровой лебедки .84
5.5. Расчет показателей надежности 85
5.6. Расчет подъемного вала на прочность .87
6. Безопасность и экологичность проекта 90
6.1. Анализ опасных и вредных производственных факторов 90
6.2. Производственная санитария 90
6.3. Освещение рабочего места 93
6.4. Шум и вибрация 95
6.5. Безопасность и защита в чрезвычайных ситуациях 96
6.6. Экологичность проекта .99
7. Экономическая часть 101
7.1. Расчет капитальных вложений на модернизацию буровой установки 101
7.2. Затраты на приобретение материалов и комплектующих 103
7.3. Затраты на монтаж оборудования 104
7.4. Расчет снижения трудоемкости изготовления и обслуживания 105
7.4. Определение экономической эффективности модернизации лебедочного модуля Б484.02.00.000 107
Заключение 108
Список использованной литературы 109

В ходе выполнения дипломного проекта предполагается добиться уменьшения габаритных размеров и массы и повышения надежности трансмиссии буровой установки за счет упрощения коробки передач и установки колодочно – дискового тормоза буровой лебедки. В качестве базовой модели взята буровая лебедка Б484.02.02.000 буровой установки БУ3900/225 ЭЧК БМ производства Волгоградского завода буровой техники.
В связи с этим целью дипломного проекта является: модернизация буровой установки БУ3900/225-ЭЧК-БМ с целью повышения надежности трансмиссии.
Для достижения поставленной цели необходимо решить следующие задачи:
- выполнить анализ научно технической информации, патентов и разработать техническое предложение;
- спроектировать и рассчитать основные элементы буровой лебедки;
- разработать мероприятия по охране труда и безопасности жизнедеятельности для проектируемого оборудования;
- дать оценку экономической эффективности разработки и возможности внедрения проектируемого механизма.

Комплектная буровая установка БУ3900/225 ЭЧК БМ с индивидуальным частотно – регулируемым электроприводом переменного тока основных механизмов, в блочно – модульном исполнении предназначена для бурения наклонно – направленных и горизонтальных нефтяных и газовых скважин турбинным, роторным способами и винтовыми забойными двигателями на месторождениях с ожидаемым содержанием в пластовом флюиде сероводорода не менее 6%.
Климатическое исполнение установки «У», категория размещения 1 по ГОСТ 15150-69, при температурах окружающего воздуха от минус 450С до плюс 400С. Предельные рабочие температуры (-500С…+450С).
В электрифицированных районах энергообеспечение буровой установки осуществляется от промышленной электросети (ЛЭП) переменного тока напряжением 6000 В, частотой 50 Гц.
Блочно – модульное исполнение предусматривает повышение монтажеспособности буровой установки при перемонтажах ее с куста на куст и сокращение эксплуатационных затрат и сроков на ввод установки в работу.

Технические характеристики БУ3900/225-ЭЧК БМ<21>:
1. Допускаемая нагрузка на крюке – 2250 кН;
2. Условная глубина бурения – 3900 м;
3. Наибольшая нагрузка от массы бурильной колонны – 1350 кН;
4. Наибольшая нагрузка от массы обсадной колонны – 2025 кН;
5. Скорость подъема крюка при расхаживании колонны – 0,15-0,25 м/с;
6. Скорость подъема крюка без нагрузки – 1,6 м/с;
7. Наибольшая оснастка талевой системы – 5*6;
8. Диаметр талевого каната – 28 мм;
9. Тип привода основных механизмов – индивидуальный, регулируемый от электродвигателей переменного тока;
10. Регулирование приводов основных механизмов – плавное;
11. Метод строительства скважин – наклонно направленный;
12. Конструктивная особенность буровой установки –кустовое блочно-модульное исполнение;
13. Подъемный агрегат
Расположение лебедки – нижнее;
Расчетная мощность, развиваемая приводом на входном валу – 750 кВт
Число передач – 2;
Тормоза лебедки:
- основной – электродинамическое торможение при спуске от основного двигателя, силовой спуск;
- вспомогательный – ленточный;
Число основных двигателей – 1;
Номинальная мощность электродвигателя переменного аварийного привода – 45 кВт;
Максимальная скорость подъема бурильной колонны от двигателя аварийного привода – 0,02 м/с;
Максимальная скорость подачи инструмента, обеспечиваемая основным двигателем лебедки - 200 м/час;
14. Ротор Р-700 с ПКР 560М
Диаметр отверстия в столе ротора – 700 мм;
Расчетная мощность привода – 750 кВт;
Допускаемая статическая нагрузка на стол ротора – 2500 кН;
Диапазон регулирования частоты вращения стола ротора – 0…200 об/мин;
Статический крутящий момент на столе ротора не более – 55 кНм;
Обогрев ротора – паровой;
15. Вертлюг:
Статическая грузоподъемность – 2500 кН;
Максимальная скорость вращения ствола – 200 об/мин;
Максимальное давление прокачиваемой жидкости – 32 МПа;
Диаметр проходного отверстия в стволе – 76 мм;
16. Стояк манифольда 140х14 – одинарный;
17. Вышка – мачтовая, А-образная, секционная, свободностоящая без оттяжек, со встроенными маршевыми лестницами и механизмом подъема, с ручной расстановкой свечей;
Соединение секций – пальцевое;
Допускаемая скорость ветра
- в рабочем состоянии при нагрузке до 225 т – 20 м/с;
- в нерабочем состоянии – 25м/с;
Грузоподъемность на крюке - 2250 кН;
Полезная высота вышки - 43,115 м;
Диапазон длин свечей – 23,8…25 м;
Расстояние между осями ног – 6,5 м;
Диаметр бурильных труб – 114, 127, 147 мм;
Длина квадрата – 27+1 м;
Подъем вышки – аварийным приводом талевой системой буровой установки;
18. Буровые насосы:
Тип – трехцилиндровый, простого действия;
Число буровых насосов – 2 шт;
Мощность бурового насоса – 950 кВт;
Предельное давление – 32 МПа;
Идеальная подача (наибольшая) -51,4 л/с;
Степень регулирования подачи – 100%;
19. Вышечно – лебедочный блок:
Отметка пола буровой от уровня земли – 8,5 м;
Суммарная площадь подсвечников – 6,22 м;
Расстояние от уровня земли до низа подторных балок – 7,1 м;
Просвет, обеспечиваемый при съезде со скважины на кусте – 3,62 м;
Высота отметки пола модулей ЦС и насосов – 2,0…2,5 м;
Давление опор на грунт – 1,2 кг/см2;
Механизм перемещения на 5 м – ступенчатый через 0,8 м двумя гидротолкателями;
Опора рабочая L = 9 м с рельсом КР-120 м – 24 шт;
Число укороченных опор l = 4,5 м – 2;
Гидротолкатель двойного действия – 2 шт;
Гидродомкрат – 4 шт;
20. Система пневмоуправления:
Модуль компрессоров в эшелоне – 1 шт;
Компрессор ДЭН-45 ШМ -2 шт;
Давление воздуха – 0,8-1,0 МПа;
Производительность 2х5,5=11 м3/мин;
Воздухосушка – ОСВ-15/12 и фильтр–влагоотделитель;
Объем ресиверов – 6,6 м3;
21. Система приготовления, очистки и обработки раствора:
Конструктивное исполнение – блочно-модульная с удалением шлама в амбар или в контейнеры шнековыми транспортерами;
Количество степеней очистки – 5;

ЗАКЛЮЧЕНИЕ
В дипломном проекте проведена модернизация трансмиссии буровой установки БУ3900/225-ЭЧК-БМ, при этом объектом модернизации выбрана ее самая сложная и ответственная часть – трансмиссия силового привода буровой лебедки. Был проведен патентно – информационный обзор и анализ конструкций лебедок отечественного и зарубежного производства. На основе полученных данных были сделаны выводы о предпочтительности технических решений, которые легли в основу модернизации буровой лебедки.
В соответствии с целью решены следующие задачи:
- спроектированы и рассчитаны основные элементы буровой лебедки;
- произведены расчеты и сравнения показателей надежности до и после модернизации;
- разработаны мероприятия по охране труда и безопасности жизнедеятельности для проектируемого оборудования;
- дана оценка экономической эффективности разработки и возможности внедрения проектируемого механизма.
Согласно сборочному чертежу и стандартам отечественного машиностроения был спроектирован технологический маршрут вала подъемного.
В результате проведения модернизации по повышению надежности трансмиссии получена прибыль 344830 руб, а кроме того снижена масса насосного агрегата на 2829 кг. Таким образом можно сделать вывод, что цель дипломного проекта, ожидаемым эффектом от которого является уменьшение габаритных размеров и облегчение лебедочного модуля с повышением надежности трансмиссии, была достигнута в полной мере.
Дата добавления: 23.06.2019
РП 626. ППР на устройство подпорной стенки из буросекущихся свай на ПК274 – ПК278 | AutoCad

Въезд на территорию строительства осуществляется с улицы Нелидова в районе ПК264, а также с ул. Ленточка в районе ПК274.
Подпорная стенка железобетонная из буросекущихся буронабивных свай диаметром 1,0 м. По верху ж/б свай устраивается шапочный брус – ж/б моно-литная балка сечением 1,1 х 1,0 м.
Лицевая поверхность подпорной стенки вы-полняется в виде монолитной ж/б прижимной стены.
Устройство буросекущихся свай производится роторной буровой уста-новкой под защитой скважин обсадными трубами. На строительно-монтажных работах применяется автомобильный кран LTM 1050-3.1 с длиной стрелы Lстрелы=38,0 м грузоподъёмностью Q=50,0 т. И кран КС 45717-1 г/п 25,0 т. Бе-тонирование ж/б свай производится автобетоносмесителями. Бетонирование шапочного бруса и прижимной стены выполняется автобетононасосом.
Для возможности проведения работ по строительству подпорной стенки, на косогоре устраивается песчаная насыпь, укрепленная со стороны ж/д путей закладным креплением из двутавров 55 и забирки из ж/б дорожных плит.
Работы ведутся на действующем перегоне с напряженным ж.д. движением, без его остановки в стесненных условиях.
Работы по устройству закладного крепления и подпорной стены не предусматривают проведение работ в технологические «окна» движения поез-дов.
Доступ техники к местам проведения работ ограничен как из-за стесненных условий, так и по условиям проходимости.
Предрейсовый и послерейсовый медицинские осмотры водителей и ма-шинистов строительных машин и механизмов осуществляется медицинским ра-ботником ЗАО СК «Афина Паллада», назначенным приказом №32П от 15.01.15г.
В нерабочее время строительная техника и машины располагаются на территории строительного участка и сдаются под охрану. До начала работы, в начале смены, водители получают доступ к вверенной им технике только после прохождения предрейсового медицинского осмотра и получения в путевой лист штампа, свидетельствующего допуск к работе (см. стр. 48).
Работы на объекте ведутся круглосуточно в 2 смены вахтенным методом с перерывами на обед (1 час) и с ежедневной пересменкой в 8.00 и 20.00 без превышения месячной нормы рабочего времени.

Стройгенплан. ПК263 – ПК271. М1:500
Стройгенплан. ПК271 – ПК278. М1:500
Технологические схема земляных работ. М1:200
Технологические схема бурения лидерных скважин. М1:200
Технологические схема погружения двутавров. М1:200
Технологические схема устройства временной насыпи. М1:200
Технологические схема укладки плит ПАГ-18. М1:200
Технологические схема устройства скважин. М1:200
Технологические схема армирования скважин. М1:200
Технологические схема бетонирования скважин. М1:200
Технологическая схема бурения скважин с обсадным столом
Схема передвижения буровой установки. М 1:200
Технологическая схема монтажа арматурных каркасов. М 1:200
Схема охранных и опасных зон ЛЭП. М 1:200
Дата добавления: 25.06.2019
РП 627. АР КР Производственное здание по ремонту дорожных машин и автомобилей 48 х 30 м в Кемеровской области | AutoCad

Внешний вид производственного здания обусловлен заданием на проектирование, определившем планировочную и функциональную структуру объекта.
Объект капитального строительства расположен в существующей застройке. С северной стороны расположена автомобильная асфальтированная дорога, с южной части расположена площадка существующего промышленного комплекса зданий. В восточной и западной сторон в непосредственной близости находятся участки свободные от застройки.
Главный вход в здание предусмотрен с северного фасада, дополнительные входы расположены с западного и и южного фасада. С северной стороны здания предусмотрены трое ворот, а с южной стороны четверо.
Габариты здания в осях 30х48 м. Здание одноэтажное. Высота помещения в самой высокой части здания 10,7 метра.
За относительную отметку 0,000 принят уровень чистого пола первого этажа.
В здании расположены два помещения: производственный цех и санузел.
Помимо планировочной и функциональной структуры, на внутреннем виде объекта также отразились и конструктивные особенности здания. В первую очередь это тип кровли и конструктивная схема самого здания.
Производственное здание решено в виде прямоугольного объема.
В качестве стенового ограждения в проекте применяются трехслойные панели типа "сэндвич" толщиной 150 мм,с рабочей шириной 1190 мм производства Группы компаний Металлпрофиль, г.Новокузнецк.
Проектом предусмотрена вертикальная раскладка стеновых панелей с креплением их к элементам фахверка.
Стеновые сэндвич-панели приняты с наружной облицовкой типа - накатка,с внутренней облицовкой типа - гладкая, с утеплителем из минеральной ваты, наружная облицовка с покрытием полиэстер производства Россия цветом RAL 7004(серый) и толщиной металла 0,5 мм, внутренняя облицовка с покрытием полиэстер производства Россия цветом RAL 9003 (белый) и толщиной металла 0,5 мм.
Кровля с уклоном 2°, система ТН-КРОВЛЯ Классик компании ТехноНИКОЛЬ, покрытие полимерная мембрана ТехноНИКОЛЬ.
Монтаж кровли производить согласно "Руководства по проектированию и устройству кровель из полимерных мембран" компании ТехноНИКОЛЬ.
Участок, отведенный для строительства здания, имеет простую форму, что также отчасти
наложило отпечаток на образ самого здания.
Входы, въезды и аварийные выходы решены с учетом задания на проектирование, требований пожарных норм, прочих нормативных документов.
Композиционная структура фасадов относительно проста и легко читаема, сдержана, лаконична.


Состав проектной документации.
Ведомость чертежей основного комплекта.
Пояснительная записка.
План производственного цеха на отм. 0,000.
Разрез 1-1
Фасады в осях 1-9, 9-1
Фасад в осях Е-А
Схемы расположения стеновых панелей в осях 1-9, 9-1
Схема расположения стеновых панелей в осях Е-А
Спецификация стеновых сендвич-панелей
Трехслойные сендвич-панели. Узел 1, 2.
Трехслойные сендвич-панелей. Узел 3. Трехслойные сендвич-панели. Узел 4,5. Трехслойные сендвич-панели. Узел 6.
Трехслойные сендвич-панели. Узлы 7, 8.
Трехслойные сендвич-панели. Узлы 9, 10.
Трехслойные сендвич-панели. Узел 11.
Спецификация фасонных элементов.
Спецификация элементов стенового ограждения.
Спецификация на устройство цоколя.
План кровли.
Ограждение кровельное. Узел 12.
Спецификация на водосточную систему
Узел 13.
Узел 14.
Узел 15.
Узел 16.
Узел 17.
Спецификация фасонных элементов кровли. Крепежный элемент Кр-1.

Раздел КР:
Класс ответственности здания II
Степень огнестойкости конструкции III
Класс конструктивной пожарной опасности С1
Категория здания по пожароопасности В
Класс функциональной пожарной опасности Ф5.1
Габариты здания в осях 30х48 м.
Высота помещения в самой высокой части здания 10,7 метра.
Здание каркасного типа, в поперечном направлении - двухпролетное (пролеты по 12м. и
18 м.), в продольном направление шаг крайних колонн 6 метров, шаг средних колон 12 метров.
Крайние колонны приняты стальными из колонного двутавра по СТО АСЧМ 20-93, фахверковые
стойки стальные, квадратного сечения из трубы по ГОСТ 30245-2012.
Колонны среднего ряда - ступенчатые по серии 1.424.3-7.1. Колонны состоят из двух
частей: надкрановой - сплошностенной двутаврового сечения, и подкрановой-решетчатой.
Надкрановая часть запроектирована из сварного двутавра, ветви подкрановой части из
прокатного двутавра по СТО АЧСМ 20-93.
Здание оборудовано четырьмя мостовыми кран-балками: в пролете 12 метров - 2 крана (5 и 8 тонн), в пролете 18 метров - 2 крана (10 и 16 тонн). Подкрановые балки приняты сварными, двутоврового сечения по серии 1.426.2-7.3. Крановые пути из рельса КР-70 по ГОСТ 4121-96.
Тормозные конструкции приняты по серии 1.426.2-7.3. По крайним колоннам - тормозная конструкции в виде сплошного листа, устанавливаемая в пролетах с вертикальными связями по колоннам. По средним колонным - тормозная ферма.
Несущими элементами покрытия приняты сварные балки двутаврового сечения, прогоны из прокатного двутавра по СТО АСЧМ 20-93. По среднему ряду колонн для опирания балок покрытия по четным числовым осям запроектирована подстропильная ферма по серии 1.460.3-23.98.
Вертикальные связи по крайним колоннам приняты по серии 1.424.3-7.2 из прокатного уголка по ГОСТ 8509-93.
Вертикальные связи по средним колонным приняты по серии 1.424.3-7.1 из прокатного уголка по ГОСТ 8509-93.
Торцевые связи по стойкам фахверка приняты квадратного сечения из трубы по ГОСТ 30245-2012.
Статический расчет каркаса выполнен в программном комплексе «SCAD Office».

Пространственная жесткость здания обеспечивается: в поперечном направлении - жесткой заделкой колонн в уровне обреза фундамента, в продольном направлении - вертикальными связями и распорками по колоннам, устройством жесткого диска покрытия (диафрагмы жесткости из профилированного листа) и горизонтальными связями по покрытию в уровне балок по крайним пролетам.
Фундаменты здания приняты на свайном основании (длина свай - 7 метров), монолитные железобетонные столбчатые. Для опирания цоколя предусмотрены монолитные железобетонные балки.
Фундаменты выполняются из бетона В20, F100, W8. Под все фундаменты выполняется подготовка из бетона В12,5.
Под торцевую кирпичную стену выполнить ленточный монолитный фундамент.
Фундаментные балки и ленточный фундамент выполнить из бетона В15, F75, W4. Под конструкциями выполнить подготовку из бетона В12,5.

 
Дата добавления: 26.06.2019
ДП 628. Дипломный проект (колледж) - 5 - ти этажный жилой дом 38,4 х 14,4 м в г. Донецк Ростовской области | AutoCad

Лист 1 – 3 – Архитектурно-строительные решения.
Лист 4 – Конструкции железобетонные.
Лист 5 – 7 – Проект организации строительства.


Введение
1. Архитектурно-строительные решения
1.1 Архитектурные решения
1.2 Конструктивные и объемно-планировочные решения
1.3 Генплан
2. Конструкции железобетонные
2.1 Конструкция плиты
2.2 Конструкция лестничного марша
3. Проект организации строительства
3.1 Календарный план
3.2 Технологическая карта
3.3 Стройгенплан
Вывод
Литература
Прилагаемые документы
Ведомость чертежей

Объемно-планировочная структура здания содержит архитектурные решения, которые комплексно учитывают социальные, экономические, функциональные, инженерно - технические, противопожарные, санитарно - гигиенические, экологические требования в объеме, необходимом для разработки проектной документации.
Здание выполнено в виде двух зеркальных блок-секций с размерами в крайних координационных осях 38400х14400 мм, из них каждая секция имеет размер 19200х14400 мм.
Вокруг лестничной клетки расположено по 4 квартиры на каждом этаже, 2 – однокомнатная, 1 – двухкомнатная, 1 – трехкомнатная, количество этажей - 5, включая 5 жилых этажей. Высота жилого этажа здания – 3000 мм, расстояние от пола до потолка – 2700 мм.
Подземное пространство - техническое подполье высотой 1830 мм, используемое только для прокладки коммуникаций, жилым этажом не является.
Высота здания от спланированной отметки земли до карниза 16300 мм. Высота здания от спланированной отметки земли до конька 19260 мм. Высота от проезда до низа окна последнего этажа 12700 мм. За относительную отметку 0,000 принята отметка пола 1-го этажа и соответствующая абсолютной отметке +35,80.
Класс здания по функциональной пожарной опасности - Ф1.3. Класс здания по конструктивной пожарной опасности – С0. Уровень ответственности здания – II. Степень огнестойкости здания – II.

В качестве основания для фундаментов служат предварительно уплотненный грунт - суглинок, мощностью 2500 мм.
Фундамент принят в виде сборной железобетонной ленты.
Стены наружные выполнены облегченными толщиной 510 мм продольные несущие.
Конструкция стены:
 наружная верста - кирпич Кр-л-пу 250х120х65 1НФ/150/1,4/50/ГОСТ 530-2012, толщиной 120 мм;
 внутренняя верста - кирпич Кр-р-пу 250х120х65/1НФ/125/2,0/25/ГОСТ 530-2012, толщиной 120 (250) мм;
 между внутренней и наружной верстой выполнено заполнение из плит минераловатными на базальтовом волокне, толщиной 100 мм, плотность 125кг/м³. Плиты утеплителя прижаты к внутренней версте кладки при помощи скоб из стальной проволоки, диаметра 3 мм Вр-1, L=125 мм, установленных в наружную версту кладки в каждый 3 ряд кладки.
Стены внутренние - толщиной 380 мм из кирпича сплошной кладки Кр-р-пу 250х120х65/1НФ/125/2.0/25 ГОСТ 530-2012.
В здании принята четырехскатная крыша. Угол наклона крыши принят 250.

Технико-экономические показатели:



Дата добавления: 28.06.2019
РП 629. Все комплекты - Строительство новой ПС 220/35/6 кВ | PDF


Состав проекта:
Том 1. Пояснительная записка;
Том 2. Планировка земельного участка;
Том 3. Архитектурные решения;
Том 4. Конструктивные решения;
Том 5.1.1 Система электроснабжения. Основные технические решения;
Том 5.1.2 Система электроснабжения. Электрические расчеты сети 220кВ;
Том 5.1.3 Система электроснабжения. Релейная защита и противоаварийная автоматика;
Том 5.2 Система водоснабжения. Система водоотведения;
Том 5.3 Отопление, вентиляция и кондиционирование воздуха, тепловые сети;
Том 5.4 Сети связи;
Том 5.5.1 Технологические решения. Электротехническая часть;
Том 5.5.3 Технологические решения. Телемеханицазия;
Том 5.5.4 Технологические решения. Автоматизированный учет электроэнергии;
Том 6 Проект организации строительства;
Том 9 Мероприятия по обеспечению пожарной безопасности;
Том 10 Мероприятия по обеспечению соблюдения требований энергетической эффективности;
Том 12 Требования к обеспечению безопасной эксплуатации объекта капитального строительства.

В соответствии с техническими условиями (ТУ) и заданием на проектирование (ЗП) (см. СибЭТС.015.17–1–ПЗ, приложения А, Б) предусматривается строительство новой ПС 220/35/6кВ «Кыргайская» с образованием двух точек присоединения к электрическим сетям ПАО «ФСК ЕЭС» вновь проектируемыми одноцепными ВЛ-220кВ «Кузбасская-Кыргайская» и «Новокузнецкая-Кыргайская»; переводом питания ПС 35/6кВ "Кыргайская-2", ПС 35/6кВ "Талдинская-Южная" и РП-6кВ АО «Миратэкс» на ПС «Кыргайская»; подключением проектируемого РУ-6кВ 2ВЦ-25М промплощадки южных стволов №34 и организацией возможности подключения проектируемой ОФ «Талдинская».

Схема присоединения к электрическим сетям ПАО «ФСК ЕЭС» обеспечивает электроснабжение энергопринимающих устройств ООО «ОФ «Талдинская» по I категории надежности в объеме - 13МВт, по II категории надежности в объеме - 11МВт и по III категории надежности в объеме - 8МВт.
Согласно результатам расчета нагрузок (см. таблицу 1), расчетная нагрузка на один трансформатор 220/35/6 кВ в нормальном режиме составит 14994,0 МВА, аварийном режиме – 29987,9 МВА, что не превышает максимальную заявленную мощность 32000 МВт. Данные по нагрузкам потребителей 6,35кВ получены от ООО «ОФ «Талдинская» при письме от 13.09.17 (см. приложение Б).
В соответствии с расчетом нагрузок и техническими условиями мощность устанавливаемых силовых трансформаторов принимается 40000 кВА.
Электроэнергия от энергосистемы отпускается нормированного качества в соответствии с ГОСТ 32144-2013, с частотой 50Гц.
Для дополнительного поддержания нормируемого качества напряжения на шинах 6-35кВ ПС 220кВ «Металлург» силовые трансформаторы Т1 и Т2 предусмотрены с устройством автоматического регулирования напряжения под нагрузкой.

На ПС «Кыргайская» предусматривается:
– наружное освещение ОРУ-35 кВ; 220 кВ;
– рабочее и аварийное освещение здания ЗРУ-6кВ;
В качестве источников света приняты светодиодные светильники и прожекторы.
Для наружного освещения предусмотрены светодиодные прожекторы, установленные на порталах 220,35кВ.
Заявленный срок службы светодиодных светильников и прожекторов 50 000 часов, что позволит сократить расходы на обслуживание осветительной установки.
Питание рабочего, наружного и аварийного освещения предусматриваются от разных секций щита собственных нужд (ЩСН).
Общие показатели электроустановки:
Напряжение сети общего освещения ~380/220В.
Установленная мощность освещения с учетом здания:
– рабочего – 1,22 кВт;
– наружного – 2,17 кВт;
– аварийного – 0,42 кВт.
Общее количество световых приборов – 90 шт., в том числе для внутреннего освещения - 45 шт., для аварийного – 14 шт., для наружного освещения - 31 шт.
 
Дата добавления: 03.07.2019
КП 630. Курсовой проект - Разработка системы обеспечения электробезопасности участка окраски | Компас

Основной вид деятельности ОАО «МЗ РИП» - изготовление радиолокационной, радионавигационной аппаратуры и радиоаппаратуры дистанционного управления.


Введение 3
1. Общая часть 5
1.1 Описание подразделения 5
2. Расчетно-конструкторская часть 11
2.1 Защитное зануление 11
2.2 Заземление 15
2.3 Защитное отключение 26
2.4 Молниезащита 28
2.5 Защита от статического электричества 38
Заключение. 39
Список использованных источников 41

Электроснабжение (ЭСН) цех получает от собственной комплектной трансформаторной подстанции (КТП), подключенной к главной понизительной подстанции (ГПП) комбината. По категории надёжности ЭСН - это потребитель 1 категории. Количество рабочих смен-3 (круглосуточно). Грунт в ДЦ- суглинок с температурой +10 ̊С. Каркас здания сооружен из блоков- секций длиной 6 м. каждый.
Размеры цеха А×В×Н= 24×18×8 м. Все помещения, кроме технологических участков, двухэтажные высотой 3,6 м.
Перечень электрооборудования (ЭО) дан в таблице 1.2. Мощность электропотребления (Рэп) указан для одного электроприёмника.
Расположение основного ЭО показано на плане.




Заключение
Для защиты от поражения электрическим током, сохранения электрооборудования и безопасных условий работы необходим комплексный подход с применение всех необходимых мер по предотвращению случайного поражения человека электрическим током. В данной курсовой проекте я рассмотрел все возможные виды защиты от случайного поражения электрическим током, как техногенного, так и природного характера.
Защитное заземление или зануление должно обеспечивать защиту людей от поражения электрическим током при прикосновении к металлическим нетоковедущим частям, которые могут оказаться под напряжением в результате повреждения изоляции.
Защитное отключение еще более минимизирует потенциальную опасность обесточивая электроприборы и установки на которых возникло короткое замыкание.
В производственном процессе также не стоит недооценивать электрозаряды, возникающий при трении. Эти заряды вызывают нарушения технологического процесса, из-за большой напряженности электрического поля возникают сильные разряды, которые могут привести к пожарам, взрывам и, как следствие, к травмам обслуживающего персонала. Статическое электричество угнетающе действует на человека, вызывает утомление, приводит к ошибочным действиям.
Разряды молнии на наземные объекты могут вызвать разрушение зданий и сооружений, а также загорание и взрыв находящихся в них горючих и взрывоопасных веществ. Поражения прямыми ударами молнии носят название первичных воздействий молнии. Молниезащита позволяет защитить не только здания и сооружения но и большую площадь производственных площадок, как от прямого удара молнии, так и от вторичных воздействий электромагнитной и электростатической индукции.
Применение и правильная эксплуатация заземления, зануления, защитного отключения, молниезащиты и защита от статического электричества гарантирует надежность эксплуатации электроприборов и электроустановок установок без опасности повреждения электрическим током работников предприятия.
Дата добавления: 13.08.2019


© Rundex 1.2
Cloudim - онлайн консультант для сайта бесплатно.