Добавить проект
Прочитать правила
Платный доступ
Авторизация:
Информация


%20%20%20%20%20%20

Найдено совпадений - 1375 за 1.00 сек.


КП 961. Курсовой проект - Расчет оснований и фундаментов 3-х этажного склада в г. Омск | AutoCad
1. Исходные данные.
2. Анализ инженерно-геологических условий площадки, свойств грунтов, оценка несущей способности
3.Анализ конструктивных особенностей здания и характера нагрузок на основание
4. Расчёт и проектирование фундаментов мелкого заложения
4.1 Определение глубины заложения подошвы фундамента
4.2 Расчет фундаментов мелкого заложения
4.3 Осадки фундаментов
5. Расчёт и проектирование свайных фундаментов
5.1 Выбор глубины заложения ростверка, типа и размера свай
5.2 Определение несущей способности свай и их размещение в ростверке
5.3 Определение осадок свайных фундаментов
6. Выбор конструкции гидроизоляции
7. Заключение
8. Список литературы


Здание (Сооружение) – Склад
Место строительства – г.Омск
Номер инженерно-геологического разреза– 21
Отметка поверхности природного рельефа 208 – 205 м
УПВ = 201-203 м
НАГРУЗКИ НА ОБРЕЗЕ ФУНДАМЕНТА (расчетные для расчета по II группе ПС:
Фундамент 2: N = 2170 кН; M = +-80 кН*м; Q = 20 кН
Фундамент 4: N = 520 кН; M = 40 кН*м; Q = -
Деталь проекта: основания фундаментов № 2 и № 4




Дата добавления: 04.05.2021

КП 962. Расчетно-графическая работа - Технологическая схема переработки РСО методом термодеструкции периодическим способом | Компас

Введение    4
1.Описание технологической схемы переработки отходов    6
2.Расчетная часть    8
Заключение    22
Список литературы    23












Разогрев реактора до температуры термодеструкции и поддержание ее в процессе протекания термического разложения осуществляется за счет циркуляции реакционной массы насосом Н2 через выносные теплообменники Т1 и Т2, обогреваемые парами высокотемпературного органического теплоносителя (ВОТ). 
Продолжительность процесса термодеструкции может составлять до четырех часов в зависимости от марки получаемой СРР. По окончании процесса СРР подается насосом Н4 в аппарат стабилизатор Ст, где происходит стабилизация разогретой СРР путем отгонки летучих соединений азотом.
Загрязненный органикой азот через конденсатор К1, охлаждаемый промышленной водой, подается на сжигание в печь. Стабилизированная СРР из стабилизатора Ст, насосом Н5 откачивается в промежуточную емкость ЕМ3, из которой этим же насосом перекачивается на склад.
После окончания процесса и откачки СРР реактор промывается горячим растворителем, который затем откачивается в свободные реакторы для получения новой партии СРР. Далее кассеты продуваются азотом и воздухом, после чего реактор открывается. Кассеты, в которых находится металлокорд, оставшийся после термодеструкции, извлекаются из реактора и направляются на склад.
Выделившаяся в процессе термодеструкции парогазовая смесь поступает в конденсаторы К2 и К3, охлаждаемые воздухом и водой. Несконденсированная часть газов из конденсаторов поступает в каплеотбойник КП1, а затем газодувкой Г3 через газгольдер ГГ непрерывно подается в печь  П на сжигание. Углеводородный конденсат из конденсаторов стекает в сборник ЕМ4, из которого насосом Н7  откачивается на склад или на сжигание в печь.
Подвод тепла к реакторам с целью проведения процесса термодеструкции при температуре 330 ºС осуществляется с помощью циркулирующего ВОТ, нагреваемого в печи П. Здесь происходит испарение жидкого ВОТ, пары которого с температурой около 375 ºС поступают в выносные теплообменники Т1 и Т2 к реакторам. В процессе нагрева реакционной массы пары ВОТ конденсируются и жидкий ВОТ снова подается на испарение в печь П. В качестве ВОТ применяется дифенильная смесь, состоящая из  26,5 % (мас.) дифенила и 73,5 % (мас.) дифенилоксида.
В качестве топлива в печи используется природный газ и углеводородный газ, образующийся в процессе термодеструкции и нагнетаемый из газгольдера ГГ газодувкой Г3. 
Дымовые газы от печи подвергаются очистке от токсичных ингредиентов (оксидов углерода, азота и серы) методом абсорбции в две ступени в абсорберах А1 и А2. На первой ступени в абсорбере А1, газовый поток подвергается щелочной абсорбции с использованием в качестве орошающего раствора суспензии Са(ОН)2, в результате чего происходит  улавливание оксида серы и охлаждение газовой фазы. Далее газовый поток поступает на вторую ступень абсорбции в абсорбер А2, с добавлением перекиси водорода. Очищенный газ через пылеуловитель дымососом  выбрасывается в атмосферу.


В ходе выполненной расчетно-графической работы провели расчет материального баланса процесса переработки РСО, расчет печи для нагрева ВОТ, расчет реактора термодеструкции РСО. Материальный баланс сошелся как на один рабочий цикл реактора, так и с учетом термодеструкции. Процент расхождения в материальном балансе процесса горения составил 7,66%. Номинальная вместимость аппарата по ГОСТу составила 0,8 м3
В качестве графического материала привели технологическую схему переработки РСО методом термодеструкции периодическим способом и ее описание.
Дата добавления: 11.05.2021
РП 963. АОВ Общеобменная вентиляция и кондиционирование центрального теплового щита управления N3 | AutoCad

Автоматическая система управления огнезадерживающими клапанами осуществляется по интегрированной системе "Орион": используются существующий контроллер двухпроводной линии связи "С2000-КДЛ", блоки сигнально-пусковые "С2000-СП4/220". Информация с приборов выводится на существующий пульт контроля и управления "С2000М", информация о состоянии отображается на существующем блоке индикации "С2000-БКИ". Данными проектными решениями предусматривается включение в двухпроводную линию связи (ДПЛС) сигнально-пусковых блоков "С2000-СП4/200" с помощью блока разветвительно-изолирующего "БРИЗ". Управление огнезадерживающими клапанами осуществляется в автоматическом (при срабатывании пожарной сигнализации) и дистанционном (с помощью "С2000-БКИ"/"С2000М") режимах.
Управляющий сигнал на отключение приточно-вытяжной системы ПВ1 при пожаре осуществляется с помощью блока сигнально-пускового "С2000-СП2 исп.02", контролирующего выходы на обрыв и КЗ, и устройства коммутационного УК-ВК.


1. Общие данные 
2. Клапаны огнезадерживающие. Схема автоматизации
3. Приточная система П1. Схема автоматизации
4. Вытяжная система В1. Схема автоматизации
5. Клапаны огнезадерживающие. Схема подключений
6. Щит управления приточно-вытяжной системой БУ-ПВ1. Схема соединения внешних проводок
7. План расположения оборудования и прокладки кабельных трасс
Дата добавления: 12.05.2021
КП 964. Курсовой проект - Здание железнодорожного вокзала 34 х 30 м в г. Казань | AutoCad

ЗАДАНИЕ    3
Введение    5
I.Исходные данные    6
II.Дополнительные исходные данные. Требования к зданию.    7
II.1 Климатологическая характеристика района строительства    7
II.2 Роза ветров по повторяемости    8
II.3 Требования к архитектурно-планировочному решению здания вокзала    9
II.4 Санитарно - гигиенические требования    11
II.5 Противопожарные требования    12
III. Краткая характеристика проектируемого здания    13
III.1 Краткая характеристика функционального процесса в здании вокзала    13
III.2 Характеристика объемно планировочного решения    14
III.3 Санитарно-техническое оборудование    15
IV.Эскизное проектирование    16
IV.1 Объемно-планировочное и функциональное решение здания    16
IV.2 Схема планировок помещений    19
V. Конструктивное решение здания    20
V.1 Конструктивная система    20
V.2 Конструктивная схема здания    21
V.3 Конструктивные элементы здания    22
V.4 Расчет количества воронок    29
VI. Расчётная часть пояснительной записки.    31
VI.1 Расчет сопротивления теплопередаче наружной стены.    31
VI.2 Расчет наружной стены на теплоустойчивость в летний период    32
VI.3 Расчет сопротивления теплопередаче чердачного перекрытия.    34
VI.4 Расчет звукоизоляции воздушного шума ограждающей конструкции между комнатами длительного отдыха и коридором.    36
Генеральный план территории вокзала    38
Функциональное описание генерального плана    39
Технико-экономические показатели    39
Парапетный узел    40
Разрез по фундаменту    41
Список использованной литературы.    42
Приложение А    43
Приложение Б    46
Приложение В    49
Приложение Г    51
Приложение Д    53



Наружные стены.
Конструкция: каркасно-панельные (ненесущие панели).
Слойность: трехслойные.
Материал слоев: трехслойные конструкции – 1-ый и 3-ий слои железобетон плотностью 2500 кг/ м3; 2-ой слой - полужесткие и жесткие минераловатные плиты плотностью 100, 150, 200 кг/ м3 пенопласты плотностью 75,100, 125 кг/ м3, пенополистирол плотностью 50, 75 кг/куб м.
Внутренние стены: из тяжелого бетона.
Перекрытия. 
Несущая часть – многопустотный железобетонный настил, железобетонные ребристые плиты.
Материал теплоизоляции совмещенного покрытия – маты минераловатные прошивные плотностью 50, 75, 125 кг/ м3; маты минераловатные на синтетическом связующем плотностью 50, 75, 125 кг/куб м; плиты полужесткие и жесткие минераловатные на синтетическом и битумном связующем плотностью 50, 100, 200 кг/ м3; плиты минераловатные повышенной жесткости на органофосфатном связующем плотностью 200 кг/ м3; плиты жесткие минераловатные на крахмальном связующем плотностью 200 кг/ м3.
Материал звукоизоляции междуэтажного перекрытия: Плиты минераловатные на синтетическом связующем жесткие плотностью 126-175 кг/ м3.
Полы: дощатые, из штучного паркета, из паркетных щитов, из линолеума, из керамической плитки, бетонные в зависимости от назначения по СНиП «Полы».
Покрытие: бесчердачное малоуклонное совмещенное. Материал утеплителя совмещенного покрытия: плиты минераловатные из каменного волокна: 5 - Ƴ = 25-50кг/м3.
Кровля – рулонная, мастичная.
Перегородки крупноразмерные заводского изготовления: в сухих помещениях из гипсобетона плотностью 1200, 1250, 1300, 1350, 1400 кг/ м3; в помещениях с повышенной влажностью из влагостойких материалов.
Лестницы – железобетонные; крупноразмерные; марши с полуплощадками.
Окна и двери по ГОСТам.
Примечание: индустриальные строительные изделия принимаются по действующим каталогам, сериям, альбомам, справочникам и т.п.
 




Дата добавления: 15.05.2021
КП 965. Курсовой проект - Выставочный зал 72 х 45 м в г. Курск | AutoCad

1.Исходные данные    3
2.Проектирование каркаса здания, обеспечение пространственной неизменяемости и жесткости 3
3.Конструирование клеефанерной панели покрытия    5
4.Проектирование рамы.    7
4.1. Статический расчет.    8
4.3. Расчет карнизного узла    13
4.4. Расчет конькового узла    15
4.5. Расчет опорного узла.    18
5. Расчет огнестойкости клеедощатой несущей конструкции    20
6. Защита конструкций от биологических повреждений.    25
Список литературы    26


Внутренние габариты здания 45х72,0 м;
Высота здания H = 4,6 м;
Шаг несущих конструкций- 4,8 м;
Число шагов- 15;
Конструкция здания – Рама из прямых элементов с карнизным узлом на нагелях по кругу;
Место строительства – г. Курск;
— район по снегу — III (Sg =1,5 кПа) (СП 20.13330.2016,  прил. Ж, карта 1);
— район по ветру—I (w0 = 0,23 кПа) (СП 20.13330.2016,  прил. Ж, карта 2);
Срок службы: 100 лет:
- коэффициент надежности по сроку службы mн(сс) =0,8 (изгиб, сжатие, смятие вдоль и поперек волокон древесины), mн(сс) =0,7 (растяжение и скалывание вдоль волокон древесины), mн(сс) =0,5 (растяжение поперек волокон древесины) - табл. 13 СП 64.13330.2017;
Тип покрытия: Теплое;
Уровень ответственности: повышенный;
Степень огнестойкости здания- V;
Ограждающие конструкции покрытия и стен- Клеефанерная панель покрытия с клеефанерными ребрами.
Древесина - сосна. Материалы: сухие сосновые доски 2-го сорта. 
Дата добавления: 15.05.2021
КП 966. Курсовой проект - Расчет оснований и фундаментов административного здания 36 х 24 м в г. Харьков | AutoCad

1 Исходные данные    5
2 Анализ конструктивных особенностей здания и характера нагрузок    6
3 Анализ инженерно-геологических условий, свойств грунтов, оценка расчетного сопротивления грунтов    7
3.1 Определение наименований грунтов    8
4 Общая оценка инженерно-геологических условий, свойств грунтов, оценка расчетного сопротивления грунтов    13
5 Фундаменты мелкого заложения    15
5.1 Выбор глубины заложения фундаментов мелкого заложения    15
5.2 Подбор размеров подошвы фундамента №1    16
5.3 Расчет осадки фундамента №1    20
5.4 Подбор размеров подошвы фундамента №3    23
5.3 Расчет осадки фундамента №3    26
6 Расчет свайных фундаментов    29
6.1 Расчет свайного фундамента №1    29
6.2 Расчет осадки свайного фундамента №1    33
6.3 Расчет свайного фундамента №3    36
6.4 Расчет осадки свайного фундамента №3    41
7 Выбор конструкции гидроизоляции    44
8 Заключение    45
БИБЛИОГРАФИЧЕСКИЙ СПИСОК    46


ЗДАНИЕ (СООРУЖЕНИЕ)      Административное здание
МЕСТО СТРОИТЕЛЬСТВА     Город Харьков
НОМЕР ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКОГО РАЗРЕЗА    11
ФИЗИКО-МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ СЛОЕВ ГРУНТА
ИГЭ №4 Суглинок мягкопластичный γ=19,6 кН/м3, γs=26,4 кН/м3, ω=0,23, ωp=0,15, ωL=0,3, Кф=2,4*10-6см/с, с=41кПа, (0,41 кгс/см2), φ=25 град, Е=20 Мпа (200 кгс/см2).
ИГЭ №13 Песок средней крупности  γ=19,2 кН/м3, γs=26,1 кН/м3, ω=0,16, ωp= - , ωL= - , Кф=2,2*10-4см/с, с= - кПа, φ=34 град, Е=36 Мпа (360 кгс/см2).
ИГЭ №21 Супесь твердая γ=19,3 кН/м3, γs=26,6 кН/м3, ω=0,23, ωp=0,32, ωL=0,37, Кф=2,6*10-7см/с, с=18кПа, (0,18 кгс/см2), φ=16 град, Е=9 Мпа (90 кгс/см2).
Отметка поверхности природного рельефа 209 м
УПВ = 204 м
НАГРУЗКИ НА ОБРЕЗЕ ФУНДАМЕНТА(расчетные для расчета по II группе ПС: 
Фундамент 1:               N =  0,14  мН;   M =  -0,01  мН*м;   Q =   кН  
Фундамент 4:               N =  1,5  мН;   M =   -0,11  мН*м;   Q =   кН  
Деталь проекта            Проектирование фундаментов №1 и №4


Курсовой проект был выполнен в соответствии с действующими СНиП, СП и ГОСТ.
В курсовом проекте по заданным характеристикам ИГЭ и их несущей способности были запроектированы два варианта фундаментов для двух несущих конструкций административного здания, расположенной в г. Харьков: мелкого заложения и свайные; произведены расчеты фундаментов по предельным состояниям.
При выполнении курсового проекта были определены:
- расчетная глубина промерзания грунта для г. Харьков d_f=1,38 м;
- размеры подошвы фундаментов мелкого заложения №1:  a=1,2 м,b=2.4 м .
- размеры подошвы фундаментов мелкого заложения №4:  a=2,1 м,b=1,8 м .
- глубина заложения фундаментов мелкого заложения d_1=1,38 м , d_2=2,55 м;
- осадка фундамента №1 S = 1,95 см, фундамента №3 S = 1,498 см;
- в свайном фундаменте №1 28 свай С4,5-30, расстояние между сваями 0,9 м, глубина заложения подошвы ростверка  d=1,5 м;
- осадка свайного фундамента №1 S = 1,03 см;
- в свайном фундаменте №3 32 свая С3,5-20, расстояние между сваями 0,6 м, глубина заложения подошвы ростверка  d=1,5 м;
- осадка свайного фундамента №3 S = 0,59 см.



Дата добавления: 17.05.2021
ДП 967. Дипломный проект (колледж) - Сварочный корпус 30 х 24 м в г. Курск | AutoCad

1. Архитектурно-планировочный раздел 7
1.1. Общие сведения 7
1.2. Схема планировочной организации земельного участка 10
1.3. Организация рельефа 11
1.4. Благоустройство территории 12
2. Архитектурно-строительный раздел 17
2.1. Функциональное назначение объекта 17
2.2. Объемно-планировочные решения 17
2.3. Объемно-конструктивные решения 21
2.4. Инженерное оборудование 22
2.5. Теплотехнический расчет ограждающих конструкций 23
2.6. Противопожарная безопасность 27
3. Расчетно-конструктивный раздел 30
3.1 Расчет фундамента 31
4. Технология и организация строительства 35
4.1. Технология производства работ 35
4.2 Подготовительные работы 37
4.3 Определение объемов работ 40
4.4 Выбор комплекта машин 46
4.5 Составление калькуляции трудовых затрат и проектирование календарного плана производства работ 49
4.6. Контроль качества производства работ 57
4.7. Генеральный план строительной площадки 61
5. Исследовательский раздел 64
5.2 Технико-экономический анализ варианта 1 65
5.3 Технико-экономический анализ варианта 2 72
6. Техническая эксплуатация здания 76
Заключение 79
Список литературы 76


Лист 1.    Ситуационная    схема;    Схема    планировочной    организации земельного участка М1:500; План благоустройства территории М1:200;
Лист 2. План 1-го этажа М1:100; План 2-го этажа М1:100; План подвала М1:100;
Лист 3. Фасад по оси А М1:100; Фасад по оси 1 М1:100. 
Лист 4. Разрез 1-1 М1:100, Разрез 2-2 М1:100.
Лист 5. План фундаментов М1:200; ФМ-1 М1:20; ФМ-2 М1:20.
Лист 6. План раскладки плит на отм. +0,000 м М1:100; Узлы А, Б М1:10; Сечение 1-1 М1:10
Лист 7. Календарный график производства работ, График потребности материалов, конструкций и изделий
Лист 8. Стройгенплан М1:400


Здание имеет два корпуса, административно-бытовой (2 этажа), производственный (1 этаж), в плане имеет прямоугольную форму.
Конструктивная схема здания – сборный железобетонный каркас.
За относительную отметку +0,000 принят уровень чистого пола первого этажа, что соответствует абсолютной отметке 243,76 м; В качестве основной несущей системы здания принят монолитный железобетонный каркас, состоящий из несущих стен, колонн, балок и перекрытий, жестко сопряженных между собой и образующих единую пространственную конструкцию. Здание имеет 3 ядра жесткости, выполненных с помощью стен толщиной 200 и 250мм вокруг лестничных и лифтовых блоков.
Пространственная жесткость каркаса здания, устойчивость обеспечивается жестким соединением стен и колонн с монолитным фундаментом, жесткостью самих стен и колонн, жесткостью плит перекрытия здания жестко сопряженных с балками и колоннами.
Фундамент - монолитный столбчатый железобетонный мелкого заглубления, принят на основании данных инженерно-геологических изысканий, высотой 1000 мм. 
Наружные стены представлены  многослойной конструкцией, состоящей из монолитных железобетонных блоков, толщиной 200/250мм, слоя эффективного каменноватного утеплителя толщиной 100 мм.
Фермы с параллельными поясами – железобетонные, пролетом 18,0 м.
Все междуэтажные перекрытия и покрытие – пустотные железобетонные плиты, толщиной 220 мм.
Принятые материалы: бетон В25W4F75, арматура А400, А240.
Колонны сечением 400х400 мм - монолитные железобетонные, квадратного сечения. Принятые материалы: бетон В30W4F75, арматура А400, А240.
Балки - монолитные железобетонные, прямоугольного сечения 450х700(h)мм и 450×750(h)мм. Принятые материалы: бетон В25W4F75, арматура А400, А240.
Лестничные марши лестниц запроектированы сборными. 
 
Дата добавления: 25.05.2021
КП 968. Курсовой проект - ВиВ 6-ти этажного жилого здания | AutoCad

отм.118,4,генплан участка М1:500,аксонометрическая схема системы
В1 М1:100,аксонометрическая схема К1 М1:100,гидравлический расчёт системы В1, исходные данные, профиль дворовой канализации М1:500 по горизонтали и М1:100 по вертикали


ВВЕДЕНИЕ    5
1.Исходные данные    6
2. Проектирование внутреннего водопровода.    7
2.1. Описание здания, его благоустройства и принятая норма водопотребления.    7
2.2. Принятые система и схема водоснабжения.    7
2.2.1. Ввод водопровода.    8
2.2.2. Водомерный узел.    9
2.2.3. Внутренняя водопроводная сеть и арматура.    10
2.3. Гидравлический расчет сети внутреннего водопровода    12
2.3.1. Аксонометрическая схема внутреннего водопровода.    12
2.3.2. Таблица гидравлического расчета сети, определение потерь напора на расчетном направлении, расчетных расходов и вероятности действия сантехнических приборов    13
2.4. Подбор водомера, определение потерь напора в водомере    14
2.5. Определение требуемого напора Hser.    15
3. Проектирование внутренней канализационной (водоотводящей) сети.    16
3.1. Конструирование внутренней водоотводящей сети, материал труб, способы их   соединения, диаметры и уклон    16
3.2. Аксонометрическая схема самого удаленного от ГКК канализационного стояка с   выпуском и колодцем 17
4. Дворовая водоотводящая сеть.    18
4.1 Трассировка сети и размещение колодцев.    18
4.2 Материал труб, их диаметры и уклоны.    18
5. Построение продольного профиля дворовой водоотводящей сети 18
Заключение    20
Список использованной литературы    21




1)Высота этажа – 3м;
2)Толщина несущих стен – 0,51м;
3)Толщина междуэтажных перекрытий – 0,2м;
4)Тип крыши – плоская неэксплуатируемая;
5)Расстояние от красной линии до городского водопровода – 10м;
6)Расстояние от водопровода до городской канализации – 2м.
 
В данном курсовом проекте рассматривается пятиэтажное двух секционное здание, размерами в осях 12,5х35,53м.  Общее количество квартир – 36. Каждая квартира оборудована санузлами с унитазом, раковиной и ванной, оборудованной душем, а также кухнями с мойками. Жилая площадь дома составляет 1447,75 м2. В доме проживает 121 человек. Также в благоустройство жилого многоэтажного дома входит красная линия, так как она является границей сфер обслуживания (до КЛ со стороны застройки коммуникации обслуживает владелец дома, за КЛ – территория, которую обслуживают городские службы). Расстояние от стены дома до красной линии – 2м. Запроектирована плоская неэксплуатируемая крыша. Принятая норма водопотребления – 210 л/сут.чел.
В данной работе в жилом здании запроектирована только система холодного хозяйственно-питьевого водоснабжения, система горячего водоснабжения не рассматривается. Система внутреннего водоснабжения включает ввод в здание, водомерный узел, разводящие сети, подводки к санитарным приборам, водоразборную, смесительную, запорную и регулирующую арматуру.
Так как рассматривалось здание, этажностью менее 12 этажей, то, согласно рекомендациям СНиП, была принята тупиковая схема сети с нижней разводкой внутреннего водопровода холодной воды с одним вводом, т. к. число квартир в доме меньше 400.
Магистральный трубопровод прокладывается вдоль внутренней продольной несущей стены здания на высоте 30 см. под потолком подвала и принимается на отметке 120,5. Крепёж магистрального трубопровода производится посредством устройства хомута к потолку подвала. 
Изоляция стальных магистральных труб — из пенополиуретана. 


 
Дата добавления: 26.05.2021
КП 969. Курсовой проект (колледж) - Выбор главной схемы электрических соединений гранитной мастерской | Visio

Введение                2
1. Общая часть                     5
1.1 Краткая характеристика объекта проектирования  5
1.2 Классификация помещений по взрыво , пожаро, электробезопасности. Определение категории 8                    
2. Расчетная  часть                       9
2.1 Расчет электрических нагрузок и выбор трансформаторов       9
2.2 Расчет и выбор числа и мощности трансформаторов главной понизительной подстанции 13
2.3 Компенсация реактивной мощности     14
2.4 Выбор числа и мощности трансформаторов цеховой ТП       15
2.5 Расчет токов короткого замыкания           16
2.6 Выбор электрической аппаратуры        20 
2.7 Расчет заземляющего устройства       26
3 Техника безопасности            28
3.1 Организационные и технические мероприятия по ТБ     28
Заключение                           38 
Список использованной литературы        39
Приложение А
1. План расположения ЭО гранитной мастерской
2. Однолинейная схема электроснабжения


По категории надежности ЭСН – это потребитель 3 категории, кроме вентиляторов и ОУ, которые относятся ко 2 категории.
Объект имеет сильную запыленность. Внутренняя проводка для защиты от пыли и механических повреждений выполняется в трубах.
Количество рабочих смен – 1. Грунт в районе гранитной мастерской - суглинок с температурой +8℃. ЭО КТП и ГМ имеют общий заземлитель, выполненный из прутковых электродов.
Каркас здания сооружен из блоков-секций длинной 4 и 6 метров каждый.
Размеры цеха АхВхН=24х14х4м.




В данной курсовой работе произведен расчет электроснабжения электрооборудования гранитной мастерской, целью которого является выбор наиболее оптимального варианта схемы, параметров электросети и ее элементов, позволяющих обеспечить необходимую надежность электропитания и бесперебойность работы.
В ходе выполнения курсового проекта мы произвели расчет электрических нагрузок. Выбрали количество и мощность трансформаторов с учетом оптимального коэффициента их загрузки и категории питающихся электроприемников. Выбрали наиболее надежный вариант сечения проводов и кабелей питающих и распределительных линий. Произвели расчет токов короткого замыкания. Определили мощность компенсирующих устройств. Произвели расчет оптимального количества и сопротивление заземляющих устройств.
На основе произведенных расчетов можно сделать вывод, что выбран наиболее оптимальный и рациональный вариант электроснабжения электрооборудования мастерской.


 
Дата добавления: 27.05.2021
РП 970. ПОС Оздоровительный центр в Московской области | AutoCad

- с севера, запада и востока - зоной реки Истра;
- с юга окружающей застройкой с. Павловская-Слобода.
В соответствии с ГПЗУ основными разрешенными видами использования земельного участка являются жилищное строительство и иные объекты культурно-социального назначения.
Проектируемая территория свободна от застройки и не благоустроена.
Инженерно-геологические изыскания представлены «Техническим отчетом по инженерно-геологическим изысканиям многоквартирного жилого комплекса по адресу: с. Павловская Слобода Истринского района Московской области, земельные участки с кадастровыми номерами 50:08:050313:0047, 50:08:050313:0048», жилые дома 44, 45, 49, 52, 58, 59, 60,61,62  выполненным ИП Потапов Н.Т..
Для Истринского района Подмосковья характерен умеренно континентальный климат, который преобладает на всей территории Московской области. Сезонность климата выражена достаточно четко: в Истринском районе стоят умеренно холодные снежные зимы со среднемесячной температурой января - 10° С, и умеренно теплое лето, со среднемесячной температурой июля +18° С. Таким образом, среднегодовой перепад температур составляет до 40° С. Годовое количество осадков колеблется в пределах 610-680 мм. Из осадков наиболее часто выпадают обложные дожди, около 20% дней с осадками приходится на ливни.  Более 130 дней в году, с мая по сентябрь, стоят дни с температурой выше +10° С.
В геоморфологическом плане занимаемая территория относится к центральной части Восточно-Европейской равнины.
Рельеф в пределах площадки для строительства ровный и характеризуется отметками поверхности земли от 136.13 до 137.16 м (отметки устьев скважин) в Балтийской системе высот 1977 г.
По данным бурения с поверхности и до глубины 8.00 м в геологическом строении территории принимают участие отложения четвертичной системы перекрытые, с поверхности современными биогенными, залегающие в следующей стратиграфической последовательности:
Современные биогенные образования (b IV) представлены:
1) почвенно-растительным слоем, мощность слоя составила 0.30 м;
Общая мощность современных биогенных образований составила 0.30 м.
Верхнечетвертичные озерно-аллювиальные отложения (lа III) залегают под современными биогенными образованиями и представлены следующими слоями:
1) пески мелкие, бурого цвета, средней плотности, маловлажные, в скважинах под номерами 36 и 39 были встречены тонкие линзы песка средней крупности, максимальная мощность слоя составила 2.40 м;
2) суглинки тяжелые, тугопластичные, бурые, в 11 скважине с прослоями глины до 0.5 м, максимальная мощность слоя 2.40 м;
3) пески крупные, бурого цвета, рыхлые, водонасыщенные, с тонкими линзами песка средней крупности, с включениями гальки т гравия до 20%, максимальная мощность слоя составила 6.80 м;
4) пески средней крупности, средней плотности, влажные, максимальная мощность слоя составила 4.20 м;
5) глины легкие, тугопластичные, темного цвета, с тонкими прослойками торфа, максимальной мощностью 3.00 м;
6) суглинки тяжелые, мягкопластичные, бурые, опесчаненные, максимальной мощностью 2.20 м;
Общая мощность верхнечетвертичных аллювиальных отложений составила 7.70 м.
По сложности инженерно-геологических условий, согласно СП 11-105-97, участок изысканий относится ко II категории.
Площадка изысканий находится в условно благоприятных инженерно-геологических условиях. Факторами, осложняющими строительство, являются:
морозное пучение грунтов;
наличие горизонта грунтовых вод, залегающих близко к поверхности в осенне-весенний период.
По грунтам, слагающим площадку сооружения, выделены шесть инженерно-геологических элемента:
ИГЭ-1. Пески мелкие, бурого цвета, средней плотности, маловлажные. (la III);
ИГЭ-2. Суглинки тяжелые, тугопластичные, бурые (la III);
ИГЭ-3. Пески крупные, бурого цвета, рыхлые, водонасыщенные, с включениями гальки и гравия до 20% (lа III);
ИГЭ-4. Пески средней крупности, средней плотности, влажные (lа III);
ИГЭ-5. Глины легкие, тугопластичные, темного цвета, с тонкими прослойками торфа (lа III);
ИГЭ-6. Суглинки тяжелые, мягкопластичные, бурые, опесчаненные (lа III).
На период производства буровых работ подземные воды вскрыты всеми скважинами на глубине 1.50 м - 2.30 м, установившийся уровень отмечен на глубине 1.10 м - 1.80 м, что соответствует границам абсолютных отметок 135.75 м – 135.04 м. 
В периоды максимального переувлажнения (снеготаяние, затяжные дожди) расположение уровня грунтовых вод следует ожидать вблизи отметок дневной поверхности.
По данным химического анализа воды гидрокарбонатные, кальциевые, пресные, нейтральные, умеренно-жесткие. В соответствии со СНиП 2.03.11-85* воды неагрессивны по отношению к бетону по всем показателям. По степени воздействия на металлические конструкции воды являются среднеагрессивными.
Коррозионная активность воды по отношению к свинцовой оболочке кабеля средняя, по отношению к алюминиевой оболочке кабеля – низкая.
В неблагоприятный паводковый период уровень грунтовых вод будет находиться выше существующего на 0.2-0.8 м. Исходя из этого, в проекте следует учесть и предусмотреть ряд мероприятий, таких как устройство дренажных систем, гидроизоляция ограждающих стеновых конструкций и фундаментных плит. 
Коррозионная агрессивность грунтов ИГЭ-2, 4 по отношению к углеродистой и низколегированной стали в соответствии с ГОСТ 9.602-2005 относится к средней степени коррозионной.
Согласно т.Б.27 ГОСТ 25100 – 2011 пески мелкие, средней крупности и крупные (ИГЭ-1,3,4) относятся к практически непучинистым; суглинки (ИГЭ-2) и глины (ИГЭ-5) относятся к среднепучинистым; суглинки (ИГЭ-6) относятся к сильнопучинистым грунтам при промерзании.
Нормативная глубина сезонного промерзания грунтов составляет для глин и суглинков 1,52 м, для песков мелких 1,85 м, песков крупных и средней крупности 1,98 м.
На территории исследуемой площадки карстообразования не обнаружено.
Сейсмическая интенсивность участка изысканий определена по карте ОСР-97А с вероятностью 10% возникновения и возможного превышения сейсмической интенсивности в баллах шкалы MSK-64 в течении 50 лет (период повторяемости Т=500 лет) и составляет 5 баллов.
При разработке документации был использован топографический план масштаба 1:500 с высотой сечения рельефа через 0,5 м, выполненный в составе Технического отчета «Об инженерно-геодезических изысканиях, выполненных на объекте, расположенного вблизи с. Павловская Слобода сельское поселение П. Слободское Московской области», МУП «ЛИМБ».
Система координат - Местная. Система высот - Балтийская.
Дата добавления: 01.06.2021
РП 971. ПОС Общественное здание в Московской области | AutoCad

- с севера, запада и востока - зоной реки Истра;
- с юга окружающей застройкой с. Павловская-Слобода.
В соответствии с ГПЗУ основными разрешенными видами использования земельного участка являются жилищное строительство и иные объекты культурно-социального назначения.
Проектируемая территория свободна от застройки и не благоустроена.
Инженерно-геологические изыскания представлены «Техническим отчетом по инженерно-геологическим изысканиям многоквартирного жилого комплекса по адресу: с. Павловская Слобода Истринского района Московской области, земельные участки с кадастровыми номерами 50:08:050313:0047, 50:08:050313:0048», жилые дома 44, 45, 49, 52, 58, 59, 60,61,62  выполненным ИП Потапов Н.Т..
Для Истринского района Подмосковья характерен умеренно континентальный климат, который преобладает на всей территории Московской области. Сезонность климата выражена достаточно четко: в Истринском районе стоят умеренно холодные снежные зимы со среднемесячной температурой января - 10° С, и умеренно теплое лето, со среднемесячной температурой июля +18° С. Таким образом, среднегодовой перепад температур составляет до 40° С. Годовое количество осадков колеблется в пределах 610-680 мм. Из осадков наиболее часто выпадают обложные дожди, около 20% дней с осадками приходится на ливни.  Более 130 дней в году, с мая по сентябрь, стоят дни с температурой выше +10° С.
В геоморфологическом плане занимаемая территория относится к центральной части Восточно-Европейской равнины.
Рельеф в пределах площадки для строительства ровный и характеризуется отметками поверхности земли от 136.13 до 137.16 м (отметки устьев скважин) в Балтийской системе высот 1977 г.
По данным бурения с поверхности и до глубины 8.00 м в геологическом строении территории принимают участие отложения четвертичной системы перекрытые, с поверхности современными биогенными, залегающие в следующей стратиграфической последовательности:
Современные биогенные образования (b IV) представлены:
1) почвенно-растительным слоем, мощность слоя составила 0.30 м;
Общая мощность современных биогенных образований составила 0.30 м.
Верхнечетвертичные озерно-аллювиальные отложения (lа III) залегают под современными биогенными образованиями и представлены следующими слоями:
1) пески мелкие, бурого цвета, средней плотности, маловлажные, в скважинах под номерами 36 и 39 были встречены тонкие линзы песка средней крупности, максимальная мощность слоя составила 2.40 м;
2) суглинки тяжелые, тугопластичные, бурые, в 11 скважине с прослоями глины до 0.5 м, максимальная мощность слоя 2.40 м;
3) пески крупные, бурого цвета, рыхлые, водонасыщенные, с тонкими линзами песка средней крупности, с включениями гальки т гравия до 20%, максимальная мощность слоя составила 6.80 м;
4) пески средней крупности, средней плотности, влажные, максимальная мощность слоя составила 4.20 м;
5) глины легкие, тугопластичные, темного цвета, с тонкими прослойками торфа, максимальной мощностью 3.00 м;
6) суглинки тяжелые, мягкопластичные, бурые, опесчаненные, максимальной мощностью 2.20 м;
Общая мощность верхнечетвертичных аллювиальных отложений составила 7.70 м.
По сложности инженерно-геологических условий, согласно СП 11-105-97, участок изысканий относится ко II категории.
Площадка изысканий находится в условно благоприятных инженерно-геологических условиях. Факторами, осложняющими строительство, являются:
морозное пучение грунтов;
наличие горизонта грунтовых вод, залегающих близко к поверхности в осенне-весенний период.
По грунтам, слагающим площадку сооружения, выделены шесть инженерно-геологических элемента:
ИГЭ-1. Пески мелкие, бурого цвета, средней плотности, маловлажные. (la III);
ИГЭ-2. Суглинки тяжелые, тугопластичные, бурые (la III);
ИГЭ-3. Пески крупные, бурого цвета, рыхлые, водонасыщенные, с включениями гальки и гравия до 20% (lа III);
ИГЭ-4. Пески средней крупности, средней плотности, влажные (lа III);
ИГЭ-5. Глины легкие, тугопластичные, темного цвета, с тонкими прослойками торфа (lа III);
ИГЭ-6. Суглинки тяжелые, мягкопластичные, бурые, опесчаненные (lа III).
На период производства буровых работ подземные воды вскрыты всеми скважинами на глубине 1.50 м - 2.30 м, установившийся уровень отмечен на глубине 1.10 м - 1.80 м, что соответствует границам абсолютных отметок 135.75 м – 135.04 м. 
В периоды максимального переувлажнения (снеготаяние, затяжные дожди) расположение уровня грунтовых вод следует ожидать вблизи отметок дневной поверхности.
По данным химического анализа воды гидрокарбонатные, кальциевые, пресные, нейтральные, умеренно-жесткие. В соответствии со СНиП 2.03.11-85* воды неагрессивны по отношению к бетону по всем показателям. По степени воздействия на металлические конструкции воды являются среднеагрессивными.
Коррозионная активность воды по отношению к свинцовой оболочке кабеля средняя, по отношению к алюминиевой оболочке кабеля – низкая.
В неблагоприятный паводковый период уровень грунтовых вод будет находиться выше существующего на 0.2-0.8 м. Исходя из этого, в проекте следует учесть и предусмотреть ряд мероприятий, таких как устройство дренажных систем, гидроизоляция ограждающих стеновых конструкций и фундаментных плит. 
Коррозионная агрессивность грунтов ИГЭ-2, 4 по отношению к углеродистой и низколегированной стали в соответствии с ГОСТ 9.602-2005 относится к средней степени коррозионной.
Согласно т.Б.27 ГОСТ 25100 – 2011 пески мелкие, средней крупности и крупные (ИГЭ-1,3,4) относятся к практически непучинистым; суглинки (ИГЭ-2) и глины (ИГЭ-5) относятся к среднепучинистым; суглинки (ИГЭ-6) относятся к сильнопучинистым грунтам при промерзании.
Нормативная глубина сезонного промерзания грунтов составляет для глин и суглинков 1,52 м, для песков мелких 1,85 м, песков крупных и средней крупности 1,98 м.
На территории исследуемой площадки карстообразования не обнаружено.
Сейсмическая интенсивность участка изысканий определена по карте ОСР-97А с вероятностью 10% возникновения и возможного превышения сейсмической интенсивности в баллах шкалы MSK-64 в течении 50 лет (период повторяемости Т=500 лет) и составляет 5 баллов.
При разработке документации был использован топографический план масштаба 1:500 с высотой сечения рельефа через 0,5 м, выполненный в составе Технического отчета «Об инженерно-геодезических изысканиях, выполненных на объекте, расположенного вблизи с. Павловская Слобода сельское поселение П. Слободское Московской области», МУП «ЛИМБ».
Система координат - Местная. Система высот - Балтийская.
Дата добавления: 01.06.2021
ДП 972. Дипломный проект - Школа на 1100 мест в г. Солнечногорск Московской области | AutoCad

ВВЕДЕНИЕ 4
ГЛАВА 1. АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ РАЗДЕЛ 6
1.1 Генеральный план 6
1.2 Объемно-планировочные решения 15
1.3 Конструктивные решения 24
1.4 Технико-экономические показатели здания 28
1.5 Теплотехнический расчет наружных ограждающих конструкций 29
ГЛАВА 2. РАСЧЕТНО-КОНСТРУКТИВНЫЙ РАЗДЕЛ 35
2.1 Расчетная модель здания 35
2.2 Сбор нагрузок 36
2.3 Расчет плитных фундаментов 51
2.4 Расчет конструкций покрытия 68
2.5 Узлы фермы спортзала 80
2.5.1 Опорный узел фермы спортзала 80
2.5.2 Верхние узлы ферм спортзала 82
2.5.3 Нижние узлы ферм спортзала 86
2.6 Сбор нагрузок 90
2.7 Поверочный расчет прогона актового зала в зоне снегового мешка 93
3 ГЛАВА ТЕХНОЛОГИЯ, ОРГАНИЗАЦИЯ И ЭКОНОМИКА СТРОИТЕЛЬСТВА 103
3.1 Организационно-технологические схемы строительства 103
3.1.1 Подготовительный период 103
3.1.2 Основной период 104
3.2 Разработка календарного плана производства работ по объекту 108
3.2.1 Календарное планирование. 109
3.2.2 Сетевое моделирование 111
3.3 Строительный генеральный план 112
3.3.1 Работы подготовительного периода 115
3.3.2 Подготовка территории 117
3.3.3 Устройство фундаментов 120
3.3.4 Работа грузоподъемными механизмами 127
3.3.5 Расчет опасной зоны работы крана 131
3.3.6 Мероприятия по обеспечению безопасного производства работы кранами 133
3.4 Складирование материалов, конструкций, изделий и оборудования 135
3.4.1 Расчет площадей складов открытого типа 137
3.5 Проектирование временных дорог 139
3.6 Расчет временных зданий и их размещение на строительной площадке 142
3.6 Расчет потребности в ресурсах 143
3.6.1 Расчет потребности в электроэнергии на период строительства 143
3.6.2 Расчет потребности в воде на период строительства 145
3.6.3 Расчет объемов водоотведения строительной площадки 147
3.7 Технологическая карта на возведение монолитных железобетонных конструкций школы 149
3.7.1 Устройство конструкций перекрытия типового этажа 151
3.7.1 Бетонирование плиты перекрытия 154
3.8 Потребность в материальных и технических ресурсах 155
3.9 Технико-экономические показатели проекта производства работ (ППР) 164
ЗАКЛЮЧЕНИЕ 165
СПИСОК ИСПОЛЬЗОВАНОЙ ЛИТЕРАТУРЫ 166


Блок 1: Центральный блок – трёхэтажный, размерами в осях 55,20×54,00 м.
Высота технического этажа 2,8 м (2,2 м до низа несущих конструкций перекрытия), высота пространством для прокладки инженерных коммуникаций 2,2 м (1,6 м до низа несущих конструкций перекрытия).
Высота первого этажа: 4,2 м. 
(3,6 м до низа несущих конструкций перекрытия).
Высота второго этажа: 4,2 м. 
(3,6 м до низа несущих конструкций перекрытия).
Высота третьего этажа: 3,9 м до низа плиты покрытия 
(3,6 м до низа несущих конструкций покрытия).
Высота в помещении актового зала: 6,2 м до низа несущих конструкций покрытия.
Блок 2: Блок начальной школы – трёхэтажный,
размерами в осях 73,00×26,60 м.
Высота технического этажа 2,8 м (2,2 м до низа несущих конструкций перекрытия), высота пространством для прокладки инженерных коммуникаций 2,2 м (1,6 м до низа несущих конструкций перекрытия).
Высота первого этажа: 4,2 м. 
(3,6 м до низа несущих конструкций перекрытия).
Высота второго этажа: 4,2 м. 
(3,6 м до низа несущих конструкций перекрытия).
Высота третьего этажа: 3,9 м до низа плиты покрытия 
(3,6 м до низа несущих конструкций покрытия).
Высота в помещении спортивного зала: 8,1 м до низа плиты покрытия 
(7,3 м до низа несущих конструкций покрытия).
Блок 3: Блок основной и средней школы – четырёхэтажный, 
размерами в осях 88,30×53,00 м.
В указанных габаритах так же располагается помещение спортивного зала, решенное в виде пристройки, размерами в осях 30,40×18,60 м – одноэтажное. 
Высота технического этажа 2,8 м (2,2 м до низа несущих конструкций перекрытия), высота пространством для прокладки инженерных коммуникаций 2,2 м (1,6 м до низа несущих конструкций перекрытия).
Высота первого этажа: 4,2 м. 
(3,6 м до низа несущих конструкций перекрытия).
Высота второго этажа: 4,2 м. 
(3,6 м до низа несущих конструкций перекрытия).
Высота третьего этажа: 4,2 м.
(3,6 м до низа несущих конструкций покрытия).
Высота четвертого этажа: 3,9 м до низа плиты покрытия 
(3,6 м до низа несущих конструкций покрытия).
Высота в помещении спортивного зала: 6,3 м до низа несущих конструкций покрытия.
Блоки стыкуются между собой в осях 5-6 и 14-15.


Между секциями здания предусматривается деформационные швы толщиной 50мм. в осях 5-6; 14-15; К2-Л2; К3-Л3.
Этажность здания – 5 этажей, включая технический этаж с пространством для прокладки инженерных коммуникаций. Высота технического этажа с пространством для прокладки инженерных коммуникаций - 2.2 - 2.8 метра, высоты этажей 4.2 метра.
Основными несущими конструкциями являются пространственные рамы из железобетонных колонн, стен, ригелей и плит перекрытия, служащих жесткими дисками. 
Фундамент здания представляет собой монолитную железобетонную плиту толщиной 500 мм на естественном основании с применением песчаной подготовки толщиной 200 мм, слоя щебня толщиной 200 мм, подбетонки толщиной 100 мм и цементно-песчаной стяжки толщиной 30 мм. Низ фундаментных плит на отм. -3.350, -2.750, -1.050 и -0.600.
Фундаменты под спортзал – столбчатые, низ на отм. -3,300 и -4,500.
Здание состоит из трех блоков и спортзала, имеет неправильную форму в плане и размеры в осях 88.3х135.6 метров. 
Колонны – монолитные железобетонные сечением 350х350 мм расположены с шагом 6-8 метров. Армируются продольной арматурой класса А500С и поперечными хомутами из арматуры класса А240. Диаметры стержней принимаются в соответствии с расчетом. Сопряжение колонн с фундаментами, балками и плитами перекрытий – жесткое.
Стены – монолитные железобетонные толщиной 200 мм, в техподполье – толщиной 200 и 300 мм. Армируются продольной арматурой класса А500С и поперечными хомутами из арматуры класса А240. Диаметры стержней принимаются в соответствии с расчетом и составляют от 12 до 16 мм для вертикальной арматуры, 10 мм для продольной арматуры. Сопряжение стен с фундаментами, балками и плитами перекрытий – жесткое.
Балки – монолитные железобетонные пролётами 6, 6.6, 7.8 и 8 метров сечением 350х500 мм /h/. Высота балки считается до верха плиты перекрытия. Армируются продольной арматурой класса А500С и поперечной арматурой класса А240. Диаметры стержней принимаются в соответствии с расчетом. Нижнее армирование балок – 4d20 А500С, верхнее армирование балок – 4d12 А500С с дополнительным усилением во всех опорных зонах стержнями 4d20 А500С. Поперечная арматура представлена хомутами  диаметров 10 А240 с шагом 200 мм. Сопряжения балок со всеми прочими элементами жесткое.
Балки по осям М3, Н3, П3 в осях 1-4 пролётом 12 метров выполняются сечением 350х800 мм. Армирование также принимается в соответствии с расчетом. Нижнее армирование балок – 6d25 А500С, верхнее армирование балок – 6d25 А500С. Поперечная арматура представлена хомутами  диаметров 10 и 12 А240 с шагом 200 мм. Сопряжения балок со всеми прочими элементами жесткое.
Плиты перекрытий всех этажей, а также плиты покрытия, выполняются толщиной 200 мм. Армируются продольной арматурой класса А500С и поперечными поддерживающими изделиями из арматуры класса А240. Диаметры стержней принимаются в соответствии с расчетом. Основной ковер армирования выполняется стержнями d12 A500C с шагом 200х200 мм (верхняя и нижняя арматура). Поперечное поддерживающее  армирование из  гнутых деталей из арматуры А240 с шагом 400х400 мм в шахматном порядке. Дополнительное усиливающее армирование выполняется стержнями d12 – d18 A500C в соответствии с расчетом.
Плиты пола выполняются в корпусе 4 и имеют толщину 200 мм. Плиты пола выполняются по грунту с устройством подготовки из 100 мм подбетонки из бетона класса В7.5, min 200 мм песка средней крупности (при необходимости выдержать отметку – до 600 мм) и 100 мм щебня фракции 40-70 мм.
Актовый зал и спортзал перекрываются с помощью металлических ферм пролетом 24 и 18 метров соответственно. Крепление ферм к ж/б колоннам – шарнирное. По нижним и верхним поясам ферм устраиваются металлические связи из сдвоенного уголка 75х6 ГОСТ 8509-93. По верхним поясам ферм выполняются прогоны с шагом 2000 мм из швеллера 22 ГОСТ 8240-97.
По фермам укладывается профилированный лист Н75-750-0.8.
Лестничные клетки внутри здания формируются монолитными железобетонными стенами. Лестницы выполняются монолитными железобетонными из бетона класса В25 с армированием стержнями диаметрами 8, 10 и 12 мм из арматуры класса А500С и А240.
Спуски в техподполье выполняются монолитными железобетонными в один пролёт, армирование арматурой класса А500С диаметрами 10 и 12 мм.
Крыльца и  пандусы здания – монолитные железобетонные отдельно стоящие, армирование арматурой класса А500С диаметром 10 мм. Крыльца и пандусы снабжены ограждениями из трубы металлической квадратной 40х40х3 по ГОСТ 8639-82.
Все сооружения выполнены с применением решений, обеспечивающих необходимую прочность, устойчивость и пространственную неизменяемость. К данным решениям относятся:
- обеспечение напряжения под подошвой фундамента от конструкции здания, не превышающего расчетного сопротивления грунта основания и подстилающих его слоев;
- обеспечение осадки и крена сооружения в допустимых пределах, в соответствии с требованиями СП 22.13330.2016 «Основания зданий и сооружений».
Пространственная  неизменяемость здания обеспечена совместной работой колонн, ферм, балок и связей, образующих жесткий каркас.
Крены и перемещений конструкции меньше допустимых. Точную информацию по расчету конструкции см. приложение 1.
Фундаменты всех зданий и сооружений на реконструируемой площадке опираются в качестве основания на ИГЭ 1 Суглинок серо-коричневый, опесчаненный, полутврд., с прослоями суглинка тугопласт., трещиноватый.
Фундаменты колонн спортзала монолитные ж.-б. ступенчатые отдельностоящие, столбчатые, стаканного типа с размером подошвы 2,4х2,4 м, 2,0х2,6 и 3,2х3,2 м соответственно. Глубина заложения фундамента составляет 3300 мм (Ф-2) и 4500 мм (Ф-1 и Ф-3) от уровня чистого пола первого этажа. Под фундаменты устраивается подготовка из 100 мм песка средней крупности и 100 мм щебня фракции 40-70 мм.
Фундамент здания представляет собой монолитную железобетонную плиту толщиной 500 мм на естественном основании с применением песчаной подготовки толщиной 200 мм, слоя щебня толщиной 200 мм, подбетонки толщиной 100 мм и цементно-песчаной стяжки толщиной 30 мм. Низ фундаментных плит на отм. -3.350, -2.750, -1.050 и -0.600.
Плиты пола выполняются в корпусе 4 и имеют толщину 200 мм. Плиты пола выполняются по грунту с устройством подготовки из 100 мм подбетонки из бетона класса В7.5, min 200 мм песка средней крупности (при необходимости выдержать отметку – до 400 мм) и 100 мм щебня фракции 40-70 мм.




В ходе выпо лнения выпус кной квалиф икационной р аботы дост игнута цел ь – выполне на разработ ка организ ационно-те хнологичес ких решени й по строите льству школа на 1100 мест.
Для достижения цели в ходе выполнения работы были решены следующие задачи:
- выполнен анализ архитектурно - планировочных и конструктивных решений здания;
- выявлен состав строительных работ, разработана технологическая карту на производство основного технологического процесса, рассчитана калькуляция трудовых затрат, освещены вопросы по организации строительства здания; 
- освещены вопросы безопасности труда и экологичности проектных решений, дана характеристика противопожарной безопасности на строительном объекте.
В первой главе изучены характеристики района строительства, проведен анализе архитектурно-планировочных и конструктивных  решений здания, выполнено описание генплана.
Во второй главе выполнена разработка вопросов технологии и организации строительства здания, произведен выбор машин и механизмов для производства работ, разработана технологическая карта на устройство конструкций здания, разработан календарный план строительства объекта,  выполнено проектирование строительного генерального плана с расчётом временных зданий и сооружений и сетей.
В третьей главе рассчитаны технико-экономические показатели по стройгенпану, рассчитана сметная стоимость строительства объекта, приведены ТЭП строительства;  разработаны мероприятия по обеспечению безопасности строительного процесса; рассмотрены вопросы охраны окружающей среды при строительстве здания. 
 
Дата добавления: 03.06.2021
ДП 973. Дипломный проект - Проектирование общежития для спортсменов 55,2 x 55,2 м в Одинцовском районе Московской области | AutoCad

ВВЕДЕНИЕ 5
РАЗДЕЛ 1. АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЕ РЕШЕНИЯ ЗДАНИЯ 7
1.1 Общие данные 7
1.2 Генеральный план 7
1.3 Объемно-планировочные решения 11
1.4 Конструктивные решение 12
1.5 Теплотехнический расчет наружной стены 15
1.6 Инженерное оборудование 18
РАЗДЕЛ 2. РАСЧЕТНО – КОНСТРУКТИВНЫЙ 19
2.1 Исходные данные 19
2.2 Сбор нагрузок 20
2.3 Составление расчетной схемы 21
2.4 Результаты расчета 23
2.5 Расчет продавливания 31
2.6 Расчет колонны 33
РАЗДЕЛ 3. ТЕХНОЛОГИЯ, ОРГАНИЗАЦИЯ И ЭКОНОМИКА СТРОИТЕЛЬСТВА 35
3.1 Проект производства работ 35
3.2 Характеристика проектируемого здания или сооружения, объекта реконструкции. Условия осуществления строительства 36
3.3 Этапы строительства 41
3.4 Номенклатура и объемы строительно-монтажных работ 44
3.5 Выбор наиболее эффективной технологии выполнении строительных процессов 46
3.6 Расчет нормативной продолжительности строительства 46
3.7 Описание принятых методов производства основных строительных работ 46
3.8 Календарное планирование 56
3.8.1 Определение трудоемкости работ и времени работы машин и механизмов 56
3.8.2 Расчет коэффициент продолжительности строительства объекта 71
3.8.3 Расчет коэффициента неравномерности движения рабочих 71
3.8.4 Расчет удельной трудоемкости на 1м3 строительного объема здания 72
3.8.5 Перечень строительных машин и механизмов 72
3.9 Технологическая карта 73
3.9.1 Область применения 73
3.9.2 Технология и организация выполнения работ 74
3.9.3 Требования к качеству и приемке работ 77
3.9.4 Потребность в ресурсах 89
3.9.5 Техника безопасности, охрана окружающей среды и экологическая безопасность 92
3.9.6 Составление калькуляции трудовых затрат 95
3.9.7 Технико-экономические показатели по технологической карте 97
3.10 Разработка строительного генерального плана 97
3.10.1 Определение требуемых параметров крана 98
3.10.2 Расчет зон влияния крана 100
3.10.3 Расчет складских помещений и площадок 102
3.10.4 Проектирование временных дорог 105
3.10.5 Определение номенклатуры и площади временных зданий 106
3.10.6 Расчет потребности в энергоресурсах 108
3.11 Экономика строительства 112
3.12 Технико-экономические показатели по проекту 112
ЗАКЛЮЧЕНИЕ 114
СПИСОК ЛИТЕРАТУРЫ 115


Высоты этажей:
1 этаж в зоне вестибюля от пола до плиты перекрытия - 4,650м; антресоль первого этажа - от пола до перекрытия - 2,850м;
2 этаж от пола до пола - 3,600м;
3 этаж от пола до пола    - 3,600м;
4 этаж от пола до перекрытия - 3,600м;
В состав общежития входит:
приемно-вестибюльная группа помещений и помещения общественного назначения;
- конференц-зал и зал теоретических занятий по 110 чел. каждый;
- предприятие общественного питания;
- жилая часть;
- административные, бытовые и вспомогательные помещения, помещения для размещения инженерного оборудования.


Плиты перекрытий - монолитные, толщиной 200мм из бетона B25 W4 F50.
Плиты покрытия - монолитные, толщиной 200мм из бетона B25 W4 F50.
Стены - монолитные, толщиной 200мм из бетона B25 W4 F50.
Колонны - монолитные, 400х400 и 500х500 из бетона B25 W4 F50.
Арматура – А400 и А240
Лестницы - железобетонные монолитные
Перемычки - металлические  
Балки - железобетонные сечением 400х400мм
Наружные стены:
- железобетонные монолитные 200 мм
- из керамзитобетонных блоков 200 мм.
Внутренние стены - железобетонные монолитные 200 мм
Перегородки - кирпичные 250 и 120 мм, пенобетонные блоки 100мм и 200мм, пазогребневые плиты 100 мм.


В итоговой аттестационной работе разработаны необходимые разделы проекта строительства общежития для спортсменов в Одинцовском районе М. О.
Архитектурно-строительный раздел включает в себя разработку генплана, принятие конструктивных решений по возведению здания, разработку необходимых противопожарных мер, а также мер санитарно-эпидемиологической безопасности, выполнена подготовка мер предназначенных для облегчения доступа маломобильных групп граждан. Был произведен теплотехнический расчет внешнего периметра здания. 
В конструктивном разделе был выполнен сбор динамических нагрузок на конструкции здания, произведен расчет плиты перекрытия, а также колонны, выбрана арматура. Также были выполнены соответствующие расчеты и построены необходимые чертежи.
В разделах технология, организация и экономика строительства, на основании произведенных расчетов были определены объемы производимых работ и их трудозатратность. Была выбрана технологическая последовательность выполнения задач на объекте, сформирован состав бригад, распределены задачи. Разработан календарный план и стройгенплан.
Также определены организационные мероприятия по охране труда и безопасности рабочего состава на территории объекта. Определенны необходимые санитарно-бытовые условия для персонала.
В ходе работ мной были выполнены поставленные задачи, а именно: оптимизирование сроков проведения работ и использования рабочих ресурсов. Обеспечить безопасные условия производства, согласно требованиям техники безопасности, а также улучшить технико-экономические показатели по проекту.


 
Дата добавления: 07.06.2021
РП 974. АР Блок административно-бытовых и вспомогательных помещений 15 х 36 м ледового дворца спорта в г. Бердск | AutoCad

а). Площадь застройки --  616,8 м2 
б). Общая площадь здания --  2105,6 м2 
в). Полезная площадь здания --  1415,4 м2 
г). Строительный объем --  9495,6 м3 
в том числе: ниже отм. 0,000 --  2097,7 м3


а). Фундаменты  -  монолитные железобетонные 
б). Стены подвала  -  сборные бетонные блоки 
в). Наружные стены  -  из керамического красного кирпича К-100/1/50  ГОСТ 530-95 на цементно-песчаном растворе М100. Кладку вести отборным целым кирпичом с постоянным контролем марок кирпича и раствора. Толщина стен 380мм.  
г). Внутренние стены  -  из керамического красного кирпича марки К-100/1/35 ГОСТ 530-95 на цементно-песчаном растворе М75. Толщина стен 380мм.  
д). Перекрытия   -  сборные ж.б. многопустотные плиты толщиной 220мм.  
е). Перегородки  -  из керамического кирпича марки М75/1/35/ ГОСТ 530-95 на цементно-песчаном растворе М75. Толщина перегородок 120мм. Кладку заармировать двумя стержнями ∅6АI(ГОСТ 5781-82) на каждые 120мм толщины кладки через шесть рядов по высоте с креплением по контуру (узлы 7, 19 серии 2.230-1 вып.5).


Общие данные
План на отм.-3,600. План на отм. 0,000.  
Планы на отм. +3,600; +7,200.  
Спецификации: элементов перемычек; элементов заполнения оконных и дверных проемов.  
План кровли. Разрезы 1-1, 2-2. План на отм. +12,600. Вентшахта ВШ1 
Фасады 1-3, 3-1. Схемы расположения элементов заполнения оконных проемов 
Фасад Н-Г. Фрагмент 1 фасада. Схема расположения рам РМ1 и РМ2.  
Фрагмент 2 фасада.  
Фрагмент 3 фасада.
План полов и отверстий на отм. -3,600 
План полов на отм. 0,000. Фрагмент 1 плана полов.  
Планы полов на отм. +3,600; +7,200 
Фрагмент 1 плана.  
Схемы расположения элементов ограждения лестницы между осями 1-2 и Е/2-Ж/1 
Схемы расположения элементов душевых кабин ДК1 и ДК2.
 
Дата добавления: 08.06.2021
ДП 975. Дипломный проект (колледж) - Электроснабжение и монтаж электрооборудования котельной | Компас

ВВЕДЕНИЕ
1 ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ
1.1 Обзор используемых источников
1.2 Краткое описание технологического процесса объекта
1.3 Электроснабжение цеха
1.4 Расчет силовой и осветительной нагрузок цеха
1.4.1 Для группы А
1.4.2 Для группы Б
1.4.3 Для цеха в целом
1.5 Выбор числа, мощности и места расположения цеховой трансформаторной подстанции с учетом компенсации реактивной мощности
1.5.1 Выбор числа и мощности цеховой трансформаторной
подстанции
1.5.2 Выбор оптимального числа цеховых трансформаторов
1.5.3 Выбор места расположения цеховой трансформаторной подстанции
1.6 Расчет распределительной сети, выбор и расчет защитных устройств на стороне низкого напряжения
1.6.1 Выбор распределительных устройств
1.6.2 Выбор аппаратов защиты
1.7 Выбор сечения проводов и жил кабелей
1.7.1 Выбор проводов питающего внутришлифовального станка
1.8 Расчет освещения цеха
1.9 Расчет заземляющего устройства электроустановок
ГЛАВА 2 ОРГАНИЗАЦИОННАЯ ЧАСТЬ
2.1 Преобразователь частоты серии ЕI-7011
2.1.1 Общие сведения
2.1.2 Монтаж частотного преобразователя в шкафу
2.1.3 Примеры применения частотного преобразователя
2.3 Охрана труда, техника безопасности и охрана окружающей среды
2.4 Экономическая часть
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ


В качестве проектируемого цеха взят котельный цех №2, который обеспечивает паром и ГВС технологические установки: КАС, ЦВК, ТК-4, бойлерная цеха.
Оборудование котельного цеха №2 включает в себя насосы котлового контура (а в некоторых случаях и остальных контуров), теплообменники, расширительные баки, запорную арматуру, фильтры, аппараты ХВО и автоматику.





В данной выпускной квалификационной работепроизведён расчёт электроснабжения и монтажа электрооборудованиякотельной, целью которого является выбор наиболее оптимального варианта схемы, параметров электросети и её элементов, позволяющих обеспечить необходимую надёжность электропитания и бесперебойной работы цеха.
В ходе выполнения работы мы произвели расчёт электрических нагрузок методом коэффициента максимума. 
Выбрали напряжение силовой и осветительной сети. С учётом требований техники безопасности, принимается напряжение 380/220 В при совместном питании силовой и осветительной нагрузки.
Выбрали схему распределительной сети котельной. Так как нагрузка цеха, представленная в основном электрозадвижками, имеет распределённый характер, преобладающая категория надёжности электрооборудования ПУЭ – 2-я, применяем магистральную схему силовой сети с распределёнными нагрузками.
В ходе работы были выбраны трансформаторы мощностью по 1000кВА типа ТМ-400/10 – трансформатор маслянный. Выбрали наиболее надёжный вариант сечения проводов и кабелей питающих, распределительных линий и защитные устройства на стороне низкого напряжения. Произвели расчёт искусственного заземления.
На основе произведённых расчётов можно сделать вывод, что выбрали наиболее оптимальный и рациональный вариант электроснабжения котельной.
Дата добавления: 08.06.2021


© Rundex 1.2
Cloudim - онлайн консультант для сайта бесплатно.