Добавить проект
Прочитать правила
Платный доступ
Авторизация:
Информация


0.4

Найдено совпадений - 437 за 1.00 сек.


КП 391. Курсовой проект - Механизм подъёма настенного поворотного крана | Компас
Введение    3
1. Выбор кинематической схемы и полиспаста механизма    4
2. Выбор крюка и крюковой подвески    5
3. Выбор каната    6
4. Расчет блоков и барабана    9
7. Выбор тормоза    21
8. Выбор муфты    22
9 Проверка тормоза    25
10. Проверка двигателя    28
11. Уточнение кинематической схемы механизма    35
Список литературы    36


Вылет стрелы, м =5
Скорость подъема груза м/мин =25
Режим работы механизма подъема:
группа режима работы: М4
класс нагружения 2В
Высота подъема, м =6.5


1. Грузоподъемность, т.................................4
2. Скорость подъема груза, м/с ..0.417
3. Группа режима работы..........................4М
4. Высота подъема, м.......................................6.5
5. Электродвигатель
  тип...........................................................МТF-312-6
  мощность, кВт..............................................17.5
  частота вращения вала, об/мин 945
6. Редуктор  тип...........................................................Ц2-400
  передаточное число..............20
7. Тормоз  тип .......................................................ТКТ-300
  тормозной момент, Н м..................276
8. Канат 15-Г-I-О-Н-1764 ГОСТ 2688-80
Дата добавления: 27.05.2022
ДП 392. Дипломный проект - Газоснабжение 5-ти этажного 60-ти квартирного жилого дома в г. Бабаево Вологодской области | AutoCad

ВВЕДЕНИЕ      9
1 КРАТКАЯ ХАРАКТЕРИСТИКА ОБЪЕКТА И УЧАСТКА СТРОИТЕЛЬСТВА    11
2 ПАРАМЕТРЫ  МИКРОКЛИМАТА    13
2.1 Параметры наружного воздуха    13
2.2 Параметры внутреннего микроклимата помещений    13
3 ТЕПЛОТЕХНИЧЕСКИЙ РАСЧЕТ НАРУЖНЫХ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ    15
3.1 Исходные данные для проектирования    15
3.2 Общие положения    15
3.3 Определение  сопротивления теплопередаче наружной стены     17
4 РАСЧЕТ ТЕПЛОВЫХ ПОТЕРЬ ОТДЕЛЬНЫХ ПОМЕЩЕНИЙ ЗДАНИЯ    20
4.1 Общие положения    20
4.2 Расчёт расходов теплоты на нагрев инфильтрующегося наружного воздуха через ограждающие конструкции помещений и бытовых тепловыделений    20
4.3 Тепловые потери квартирных помещений    20
5 РАСЧЁТ СИСТЕМ ГАЗОСНАБЖЕНИЯ    23
5.1 Определение плотности и теплоты сгорания природного газа    23
5.2 Анализ основных параметров системы газоснабжения    25
5.2.1 Внутридворовая сеть газопровода    25
5.2.2. Внутридомовой газопровод    26
5.3 Определение  расчетных расходов газа на участках    28
5.4 Гидравлический расчет газопровода низкого давления    31
5.4.1 Гидравлический расчет наружного газопровода    31
5.4.2 Гидравлический расчет внутридомового газопровода    32
6 РАСЧЁТ РАСХОДА ТЕПЛОТЫ НА ГОРЯЧЕЕ ВОДОСНАБЖЕНИЕ    40
7 ПОДБОР КОТЛОВ    42
7.1 Расчет тепловой мощности котла    42
7.2 Рекомендации по вентиляции    44
7.3 Отвод продуктов сгорания и подвод воздуха на горение    44
7.4 Сигнализация загазованности    45
8 АВТОМАТИЗАЦИЯ ГАЗОВОГО КОТЛА МАРКИ  BAXI  “MAIN FOUR 240 F” 46
8.1 Основные положения    46
8.2 Контрольно – измерительные приборы    46
8.2.1 Местные приборы    47
8.2.2 Система автоматического контроля    47
8.3 Сигнализация    47
8.4 Технологическая и аварийная защита    48
8.5 Автоматическое регулирование    48
8.6 Спецификация оборудования    49
9 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ПРОЕКТА    54
9.1 Локальный сметный расчет на внутренний и наружный газопроводы    54
10 БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ ПРИ МОНТАЖЕ ТРУБОПРОВОДОВ ДЛЯ ГАЗОСНАБЖЕНИЯ 56
10.1 Техника безопасности при электросварочных и газопламенных работах    56
10.1.1 Общие требования безопасности    56
10.1.2 Требования безопасности во время работы    57
10.1.3 Требования безопасности в аварийных ситуациях    60
10.1.4 Требования безопасности по окончании работы    60
10.2. Техника безопасности при монтаже внутренних систем    61
10.2.1. Общие требования    61
10.2.2 Требования безопасности во время работы    63
10.2.3 Требования безопасности в аварийных ситуациях    66
10.2.4 Требования безопасности по окончании работы    66
10.3 Техника безопасности при монтаже пластиковых труб    67
10.4 Пожарная безопасность зданий и сооружений    68
10.5 Гигиенические требования к организации работ в условиях нагревающегося микроклимата  70
11 ЭКОЛОГИЧНОСТЬ ПРОЕКТА    72
11.1 Выбросы загрязняющих и токсичных веществ с дымовыми газами в атмосферу    72
11.2 Оптимизация процессов горения    72
ЗАКЛЮЧЕНИЕ    74
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ    76
ПРИЛОЖЕНИЕ 1 Таблицы тепловых потерь помещений    79
ПРИЛОЖЕНИЕ 2 Таблица расчета необходимой мощности котла    109
ПРИЛОЖЕНИЕ 3 Локальная смета №1    111
ПРИЛОЖЕНИЕ 4 Локальная смета №2    122
 
1 - Ведомость рабочих чертежей основного комплекта наружного газопровода, общие данные, условные обозначения, спецификация
2 - Продольный профиль подземного газопровода,узел врезки в существующий газопровод,схема монтажа изолированного провода-спутника,соединение изолированного провода-спутника под землей
3 - Топографический план района проектирования
4 - Выход газопровода из земли, прокладка газопровода в полиэтиленовом футляре , установка подземного крана с выводом штока под ковер ,узел А ,узел Б
5 - Ведомость рабочих чертежей основного комплекта внутридомовых газопроводов, общие данные, условные обозначения, спецификация
6 - Прокладка газопроводов по фасаду в осях 1-29, 29-1, А -Е
7 - Функциональная схема автоматизации газового котла марки BAXI "MAIN Four 240F",спецификация контурной схемы автоматизации газового котла марки BAXI "MAIN FOUR 240F"
8 - Аксонометрическая схема разводки настенного газопровода
9 - Принципиальная схема,разрез 1-1,разрез 2-2,оборудование дымоходов,узел 1, разрез 1-1,узел установки газового оборудования в кухне, оборудование дымоходов (М 1:20) 
10 - Планы 1 и типового этажей 
11 - Схема газового стояка Гст-3, Гст-4,Гст-1,2,5,6,7,8,11,12
12 - Схема газового стояка Гст-9,Гст-10


Проект разработан на основании задания на проектирование ЗАО «Желдорипотека», технических условий №216,№217 от 26.12.2012г., выдан-ных ПУ «Бабаеворайгаз» филиалом ОАО «Вологдаоблгаз», и инженерно-геологических изысканий,  выполненных ОАО «ВологдаТИЗИС».
Проектная документация разработана в соответствии с градостроитель-ным планом земельного участка, заданием на проектирование, техническими регламентами, в том числе устанавливающими требования по обеспечению безопасной эксплуатации зданий и безопасного использования прилегающей к ним территорий, и с соблюдением технических условий.
Проектируемый газопровод прокладывается подземно. Газопровод на выходе из земли заключен в футляр. В зоне прокладки газопровода залегают пески пески мелкие средней плотности с прослоями песка средней крупности  и суглинки полутвердые с включением гравия и гальки до 15%. Грунты на площадке по степени пучинистости являются: пески мелкие средней плотно-сти – слабопучинистые, суглинки полутвердые – слабопучинистые, суглинки тугопластичные – среднепучистые, суглинки мягкопластичные – сильнопу-чинистые. Глубина промерзания составляет: для суглинков – 1,50 м; для пес-ков мелких – 1,55 м.
Глубина заложения газопровода колеблется от 1,22м до 2,21м.
На всем протяжении трассы газопровода дно траншеи выравнивается слоем среднезернистого песка толщиной 10 см, а после укладки газопровод засыпается песком на высоту не менее 20см.
Проектом предусматривается пассивная защита стальных участков га-зопровода низкого давления и на стальные футляры, выполненных из элек-тросварных труб, от электрохимической коррозии при помощи «весьма уси-ленной изоляции» (экструдированный полиэтилен). Проектируемый подзем-ный газопровод  из полиэтиленовых труб  защиты от электрохимической коррозии  не требует. Для защиты газопровода от атмосферной коррозии надземный газопровод покрывают грунтовкой за 2 раза и масляной краской за 2 раза.
Газоснабжение 60 квартирного жилого дома предусмотрено от суще-ствующего подземного газопровода низкого давления диаметром Ø 159 мм, расположенный по ул. Гайдара в г. Бабаево.
Данным проектом предусмотрено внутреннее газооборудование про-ектируемого жилого дома с учетом использования его на пищеприготов-ление, поквартирное отопление и горячее водоснабжение.
Проектом предусмотрена установка в кухне каждой квартиры жило-го дома четырехгорелочная газовая плита NEVA “540-50” ОАО «Газап-парат» и отопительный водогрейный настенный газовый котел BAXI се-рии “MAIN Four 240F”. 


Обобщая результаты проведенного в дипломном проекте исследования разработки системы газоснабжения 5 этажного  многоквартирного  дома по адресу Вологодская область, город  Бабаево улица Гайдара дом 32, можно сформулировать следующие выводы:
-  запроектирована плоскостная схема наружных газопроводов от существующего подземного газопровода низкого давления диаметром Ø 159 мм и от существующего ГРП по ул. Гайдара;
- произведен гидравлический расчет наружного газопровода. Газопровод выполнен из трубы ПЭ 80 ГАЗ SDR11 Ø160×14,6   по ГОСТ Р 508308-95 с изм.1-3 и заключен в  футляр из трубы ПЭ 80 ГАЗ SDR11 Ø225×20,5  по ГОСТ Р 508308-95 с изм.1-3;
- запроектировано внутреннее газоснабжение;
- выполнен гидравлический расчет внутридомового газопровода. Проектируемый настенный газопровод  принят из электросварных труб  Ø89×3,5 мм и Ø57×3,5 мм  по ГОСТ-10704-91, внутренний газопровод принят из водогазопроводных труб Ø57×3,5 мм  по ГОСТ-10704-91, Ø 25х3,2 мм, Ø 20х2,8 мм, Ø 15х2,8 мм по ГОСТ-3262-75*. 
-газопровод, проходящий через стену и перекрытие, заключен в футляр. Диаметр футляра принимается равным Ø 89×4,0  мм ;
- в помещении кухни устанавливаются автоматизированный газовый котел модели MAIN Four 240F итальянской фирмы BAXI и плита газовая 4-х конфорочная  Neva “540-50”;
- для учета расхода газа в кухнях устанавливаются газовые счетчики ВК G4 фирмы “ELSTER GmbH”; 
- подобрано необходимое оборудование для наилучшего функционирования системы: трубы определенного диаметра и запорно-регулирующая арматура для системы газоснабжения, настенные газовые котлы итальянской фирмы BAXI марки “ MAIN Four 240F ”для каждой квартиры. 
- на вводе в каждое помещение кухни устанавливается автоматический термозапорный клапан и электромагнитный клапан КЗГУИ;
- выполнено технико-экономическое обоснование проекта, на примере локального сметного расчета;
- представлены основные положения по технике безопасности при производстве монтажных работ запроектированных систем, пожарной безопасности, гигиеническим требованиям  и о защите окружающей среды от выбросов в атмосферу.
 
 
Дата добавления: 30.05.2022
ДП 393. Дипломный проект - Проектирование гостиничного комплекса с апартаментами 67,67 х 33,35 м в г. Москва | AutoCad

ВВЕДЕНИЕ 5
1 АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ РАЗДЕЛ 7
1.1 Описание генерального плана 7
1.1.1 Краткая климатическая характеристика района строительства 8
1.2 Архитектурно-планировочные решения 8
1.3 Конструкции подземной части здания 14
1.4 Конструкции надземной части здания. 16
1.5 Теплотехнический расчет здания 18
1.5.1 Теплотехнический расчет наружной стены 19
2 РАСЧЕТНО-КОНСТРУКТИВНЫЙ РАЗДЕЛ 22
2.1 Конструктивная схема 22
2.2 Расчет плиты перекрытий -1-го этажа на изгиб (расчет по первой группе предельных состояний) 24
2.3 Расчет плиты перекрытий -1-го этажа на продавливание (расчет по первой группе предельных состояний) 27
2.4 Расчет плиты перекрытий -1-го этажа по деформациям (расчет по второй группе предельных состояний) 30
3 ТЕХНОЛОГИЯ, ОРГАНИЗАЦИЯ И ЭКОНОМИКА СТРОИТЕЛЬСТВА 31
3.1 Проект производства работ 31
3.2 Характеристика проектируемого здания или сооружения, объекта реконструкции. Условия осуществления строительства 32
3.3 Этапы строительства 34
3.4 Номенклатура и объемы строительно-монтажных работ 35
3.5 Выбор наиболее эффективной технологии выполнении строительных процессов 36
3.6 Расчет нормативной продолжительности строительства 37
3.7 Описание принятых методов производства основных строительных работ 38
3.8 Календарное планирование 45
3.8.1 Определение трудоемкости работ и времени работы машин и механизмов 45
3.8.2 Расчет коэффициент продолжительности строительства объекта 53
3.8.3 Расчет коэффициента неравномерности движения рабочих 53
3.8.4 Расчет удельной трудоемкости на 1м3 строительного объема здания 54
3.9 Технологическая карта 54
3.9.1 Область применения 54
3.9.2 Технология и организация выполнения работ 54
3.9.3 Требования к качеству и приемке работ 56
3.9.4 Потребность в ресурсах 58
3.9.5 Составление калькуляции трудовых затрат 61
3.9.6 График производства работ 62
3.9.7 Техника безопасности при производстве работ 63
3.9.8 Технико-экономические показатели по технологической карте 65
3.10 Стройгенплан 65
3.10.1 Определение требуемых параметров крана 66
3.10.2 Расчет складских помещений и площадок 71
3.10.3 Проектирование санитарно-бытового и административного обслуживания работающих 73
3.10.4 Проектирование временного электроснабжения 75
3.10.5 Расчет временного водоснабжения 77
3.11 Экономика строительства 79
3.12 ТЭП 79
ЗАКЛЮЧЕНИЕ 81
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 82


Въезд в подземную автостоянку предусмотрен по закрытой рампе из проезда, граничащего с бизнес-центром «Луч».
Подземное пространство запроектировано в 2-х уровнях единым объемом для всего здания.
Общая площадь здания 12 295 м2, в том числе:
- общая площадь наземной части 9 115 м2;
- общая площадь подземной части 3 180 м2.
Верх фундаментной плиты запроектирован не ниже 10м от уровня планировочной отметки здания.
Размещение помещений в подземных уровнях здания.
На минус 2-м уровне (на отметке -7.200) размещены:
- зона парковки манежного типа;
- технические помещения парковки;
- рампы въезда и выезда.
На минус 1-м уровне (на отметке -4.200) размещены:
- зона парковки манежного типа;
- рампы въезда и выезда;
- служебные помещения автостоянки;
- технические помещения комплекса;
- помещения обслуживающего персонала комплекса с раздевалкой, душем и санузлом;
- мастерские службы эксплуатации.
Основной шаг колонн 8,1 х 8,1м.
Высота минус 1-го этажа от пола до пола – 4,2м в пространстве под зданием. 
За контуром здания -2,8м (в чистоте) от пола до низа перекрытия.
Высота минус 2-го этажа от пола до пола – 3,0м.
На -1-м и -2-м подземных уровнях размещена автостоянка на 61 машиноместо для автомобилей лиц, проживающих в гостинице; администрации гостиницы и сотрудников, в т.ч. обслуживаемые парковщиком (для парковки автомобилей всех категорий маломобильных групп населения (далее - МГН), без доступа МГН в помещения стоянки). В стоянке также предусмотрены зоны хранения мототехники и велосипедов.  
Технические помещения на этажах запроектированы в местах наименее удобных для парковки автомобилей.
На 1-ом этаже запроектированы:
Входная группа в гостиницу, в составе которой предусмотрено устройство:
- входного вестибюля;
- 2-х лифтовых холлов;
- стойки рецепции;
- зон отдыха и ожидания, которые представляют собой диванную группу с небольшим внутренним благоустройством;
- помещения хранения багажа;
- помещений служб эксплуатации;
- рабочие помещения;
- административных помещений гостиницы с отдельным входом;
- помещения пожарно-охранного поста, диспетчерской с отдельным входом;
- рампы въезда-выезда из подземной автостоянки;
- фитнес для гостей гостиницы.
На 2-9-м этажах запроектированы:
- номера для временного проживания – 53 номера на 159 чел., в т.ч.: 
2-х местных – 16 шт.
3-х местных – 21 шт.
4-х местных – 16 шт.
- помещения горничных;
- нежилые зоны общего пользования (холлы, коридоры, лифтовые шахты, технические ниши и шкафы для прокладки инженерных коммуникаций); поэтажные шкафы и шахты инженерных коммуникаций запроектированы в центральных частях здания.


Фундаментная плита принята толщиной 1000мм располагается на отметках -7.300(128.50). Фундаментная плита выполняется по подготовке из бетона класса В10 толщиной 100 мм. 
В качестве естественного основания для фундаментов комплекса будут служить следующие грунты:
глины твердые ИГЭ-6
глины полутвердые ИГЭ-6а
В местах наиболее нагруженных колонн на -2-м этаже на отметке -7.300 предусмотрены банкетки толщиной 100 мм.
Вертикальные несущие конструкции подземной части приняты:
периметральная прижимная стенка – толщиной 250, 400 мм;
монолитные железобетонные стены и переходные элементы – толщиной 200, 250, 500, 650 мм;
колонны габаритами 500х800 мм, 500х900 мм, 650х800 мм, 750х800 мм, 500х1000 мм, 500х1200 мм, 600х1200 мм;
Горизонтальные несущие конструкции подземной части приняты:
плита перекрытия над -2-м этажом – толщиной 250 мм;
плита перекрытия над -1-м этажом – толщиной 300, 500 мм;
Лестницы – монолитные железобетонные.
Пандус подземной автостоянки – монолитный железобетонный толщиной 300 мм.
Учитывая естественную подтопляемость площадки строительства, по подошве фундаментной плиты, а также между прижимной стенкой и «стеной в грунте» предусмотрена мембранная гидроизоляция.
Материалы несущих конструкций подземной части.
Материал несущих конструкций подземной части – монолитный железобетон.
Бетон для нижеследующих элементов конструкций назначен:
-фундаментная плита – класса прочности на сжатие В35, марки по водонепроницаемости W8, по морозостойкости F100;
-колонны – класса прочности на сжатие В45, марки по водонепроницаемости W8, по морозостойкости F100;
-стены внутренние – класса прочности на сжатие В45, марки по водонепроницаемости W8, по морозостойкости F100;
-стены наружные – класса прочности на сжатие В45, марки по водонепроницаемости W8, по морозостойкости F100;
-плиты перекрытия – класса прочности на сжатие В35, марки по водонепроницаемости W8, по морозостойкости F100;
-лестничные марши и лестничные площадки - класса прочности на сжатие В25.
Арматура – класса А500С по ГОСТ Р 52544-2006, класса А240 по ГОСТ 5781-82.


9-ый этаж выполнен в металлическом каркасе, состоящим из рам из прокатных профилей. Соединение стойки рамы с железобетонной плитой перекрытия принято шарнирным, ригеля со стойкой рамы – жестким. Предусмотрены горизонтальные связи по верхнему поясу ригелей рам, кроме того, жесткость и пространственную неизменяемость металлическому каркасу обеспечивает крепление рам к вертикальным железобетонным конструкциям стен.
Вертикальные несущие конструкции приняты:
- монолитные железобетонные стены и переходные элементы – 
толщиной 200, 250, 300, 400, 450, 500, 750, 800 мм;
- монолитные железобетонные пилоны – толщиной 300 мм;
- колонны сечением 500х500, 500х700, 600х600, 500х1000 мм, Ø500 мм;
- стойки рам металлокаркаса 9-го этажа – двутавр 25 К1 СТО АСЧМ 20-93;
Горизонтальные несущие конструкции надземной части приняты:
- плиты перекрытия – толщиной 250, 300, 400 мм;
- плита покрытия – толщиной 300, 350 мм;
- плита покрытия венткамеры – толщиной 200 мм.
- ригели рам металлокаркаса 9-го этажа – двутавр 40Ш1, 35Б1 по СТО АСЧМ 20-93;
- прогоны покрытия над 9-ым этажом из двутавра 18Б2 по СТО АСЧМ 20-93.
Материал несущих конструкций надземной части – монолитный железобетон.
Бетон для нижеследующих элементов конструкций назначен:
- колонны, пилоны – на 1 и 2-м этажах класса прочности на сжатие В45, начиная с 3-го этажа класса прочности на сжатие В35;
- стены – на 1 и 2-м этажах класса прочности на сжатие В45, начиная с 3-го этажа класса прочности на сжатие В35;
- плит перекрытия – класса прочности на сжатие В35;
- плиты покрытия – класса прочности на сжатие В35;
- лестничные марши и лестничные площадки - класса прочности на сжатие В25.
Арматура – класса А500С по ГОСТ Р 52544-2006, класса А240 по ГОСТ 5781-82.


В данной работе разработаны такие разделы, как архитектурно-строительный, расчетно-конструктивный и раздел технология, организация и экономика строительного производства.
При строительстве гостиничного комплекса предполагается использовать  все современные методы ведения работ и новые материалы, применение которых ведет к уменьшению материалоемкости, увеличению производительности труда, повышению эффективности строительства.
В архитектурно-строительном разделе представлены решения по генеральному плану, архитектурно-планировочные решения, конструктивные решения, мероприятия по соблюдению требований в области пожарной, санитарно-эпидемиологической безопасности, мероприятия по обеспечению доступа маломобильных групп населения и энергетической эффективности, выполнен теплотехнический расчет ограждающих конструкций.
В конструктивном разделе описана конструктивная схема, выполнен сбор нагрузок и выполнен расчет плиты перекрытия.
В разделах технология, организация и экономика строительства, на основании полученных данных по разработанным разделам была определена номенклатура работ, определены объемы работ и технологическая последовательность выполнения работ, определены строительные машины и механизмы, состав звеньев (бригад) необходимый для выполнения работ, разработан календарный план работ и строительный генеральный план, технологическая карта.
Дата добавления: 02.06.2022
КП 394. Курсовой проект - ТОСП одноэтажного промышленного здания из сборных железобетонных конструкций | AutoCad

Введение
1. Исходные данные для проектирования
2. Номенклатура работ
3. Подсчет объемов работ
4. Подсчет трудовых затрат
5. Выбор монтажных кранов
6. Определение марки гусеничного стрелового крана для монтажа элементов
7. Выбор рациональных методов производства монтажных работ
8. Технология монтажа конструкций
9. Допустимые отклонения при монтаже конструкций
10. Технико-экономические показатели
Библиографический список


Вариант по списку: 38
Тип здания: ОП – одноэтажное промышленное здание
Схема генплана: 1,4
Номер задания на генплане: 2
Схема плана здания: 1.19
Вариант: Б
Длина здания: 216 м
Расстояние транспортирования: 8
Начало строительства: 29.05
1. Здание одноэтажное, промышленное, полносборное, каркасное, многопролетное, безподвальное, отапливаемое.
2. Крыша скатная с внутренним водостоком.
3. Конструкции здания:
Фундамент под колонны – железобетонный, сборный, отдельно стоящий, столбчатый, ступенчатого типа. Бетон класса В10, В15;
4. Фундаментные балки, колонны, стропильные и подстропильные фермы, плиты покрытия из тяжелого бетона;
5. Наружные стеновые панели из керамзитобетона, однослойные;
6. Подкрановые балки, оконные переплеты, связи, распорки, надколонники – стальные;
7. Стропильные конструкции – стропильные фермы сегментные, раскосные;
8. Привязка рядов колон:
- крайних рядов – 0 мм;
- средних рядов – центральная;
9. Все подготовительные работы на строительной площадки выполнены, в том числе вертикальная планировка, временные дороги и площадки укрупнительной сборки на отм. - 0.400м;
 11. Надземные инженерные сети, в том числе ЛЭП в зоне монтажа отсутствуют;
 12. Конструкции всех подземных сооружений рассчитаны на движение над ними тяжелых монтажных кранов.
 
Дата добавления: 15.06.2022
РП 395. ЭОМ Трансформаторные подстанции музеев Федерального значения в г. Москва | AutoCad


Распределительное устройство состоит из отдельных изолированных ячеек, изготовленных из нержавеющей стали. Внутреннее пространство заполнено газом под давлением. Детали корпуса соединяются сварным методом без использования уплотнителей. Цельносварная конструкция сохраняет изоляцию на весь срок эксплуатации, не требуя обслуживания. Герметичность зависит от естественной диффузии элегаза с оболочкой, гарантийный срок сохранения необходимого уровня вещества - 30 лет. Для контроля давление газовой среды ячейка КРУЭ оснащается специальным датчиком, подключенным к внешнему индикатору. На лицевую панель выведены кабельные адаптеры, информационный дисплей с блоком индикаторов и кнопки управления основными функциями. 


0.4кВ, укомплектованного серийными панелями типа ШНН-ЭПА-14.  На напряжении 0,4кВ принята секционированная двумя рубильниками на ток 1600 А и 2500 А на две секции, система сборных шин. Питание каждой из секций шин осуществляется от силовых трансформаторов мощностью 1600кВА (ТП1, ТП2) и  2500 кВА (ТП3) каждый, подключенных к щиту 0,4 кВ кабелями через автомат на ток 2500 А и 4000А.   Присоединение отходящих линий 0,4 кВ к щиту предусматривается через воздушные автоматические выключатели. Сечение сборных шин щита 0,4 кВ принято исходя из мощности силовых трансформаторов с учетом расчетной нагрузки и проверено на термическую и электродинамическую устойчивость при трехфазном коротком замыкании.


Общие данные
Посадка
Схема электрическая принципиальная ТП-1 в однолинейном исполнении
Схема электрическая принципиальная ТП-2 в однолинейном исполнении
Схема электрическая принципиальная ТП-3 в однолинейном исполнении
Компоновка оборудования ТП-1-ТП-2
Компоновка оборудования ТП-3
Опросный лист РУ-20кВ для ТП1-ТП2
Опросный лист РУ-20кВ для ТП3
Заземление. Внутренний контур ТП1-ТП2.
Заземление. Внутренний контур ТП3
Заземление. Узлы.
Заземление. Внешний контур
Конструкция глубинного электрода-заземлителя.
План раскладки силовых кабелей
Собственные нужды
Освещение. План
Отопление. План
Расчет естественной вентиляции для ТП1 и ТП2
Расчет естественной вентиляции для ТП3
 
Дата добавления: 23.06.2022
ДП 396. Дипломный проект (техникум) - 3-х этажный 9-ти квартирный жилой дом в ст. Владимировская | AutoCad

Проектом предусмотрен свайный фундамент. Отметка низа ростверка фундамента принята – 2,600м; ростверк монолитный железобетонный. Марка свай С7-30.4, по серии 1.011-6, сваи выполнены из железобетона.
От влаги фундамент защищен вертикальной обмазочной гидроизоляцией «Макссил». Горизонтальная гидроизоляция выполнена из цементного раствора М100.

Наружные стены кирпичные, толщиной 380мм с утеплителем, расоложенным снаружи. Утеплитель – «ISOVER FLO» толщиной 75мм, к кирпичной стене крепится клеевым составом для приклейки термоизоляции, затем оштукатуривается улучшенной штукатуркой, толщиной 20мм.Армирование штукатурного слоя выполняется стальной цельно паяной оцинкованной тканой сеткой по ГОСТ 27-14-75 с размером ячейки 20 мм и диаметром проволоки 1-1,6 мм . Сетка закрепляется на дюбелях.
Привязка наружных стен – 90мм, привязка самонесущих стен – нулевая. Внутренние стены кирпичные толщиной – 380мм, привязка – центральная.

Содержание:
Введение
1 Архитектурное проектирование здания
1.1 Генплан
1.2 Объемно-планировочные решения
1.2.1 Описание объемно-планировочного решения
1.2.2 Технико-экономические показатели объемно планировочного решения
1.3 Конструктивные решения
1.3.1 Конструктивная схема
1.3.2 Фундаменты
1.3.3 Стены
1.3.4 Перегородки
1.3.5 Перемычки
1.3.6 Перекрытия
1.3.7 Крыша
1.3.8 Лестницы
1.3.9 Двери
1.3.10 Окна
1.3.11 Полы
1.4 Спецификации
1.5 Отделка здания
1.5.1 Наружная отделка
1.5.2 Внутренняя отделка
1.6 Сейсмозащитные мероприятия
1.7 Теплотехнический расчет наружной стены
1.8 Сбор нагрузок
1.8.1 Исходные данные
1.8.2 Сбор нагрузок на 1 м2 горизонтальной проекции
1.9 Проектирование монолитного ленточного фундамента
1.9.1 Исходные данные
1.9.2 Определение нагрузки на 1 метр длины фундаментов
1.9.3 Определение ширины подошвы фундамента
под наружные несущие стены
1.9.4 Определение ширины подошвы фундамента
под внутренние несущие стены
2 Организационно-технологические решения
2.1 Календарный план строительства
2.1.1 Общие положения
2.1.2 Выбор монтажного крана
2.1.3 Определение сроков строительства
2.1.4 Определение номенклатуры и объема работ
2.1.5 Определение трудовых затрат
2.1.6 Технико-экономические показатели
2.2 Строительный генеральный план
2.2.1 Основные принципы проектирования
2.2.2 Определение площади складов
2.2.3 Определение площади временных зданий
2.2.4 Расчет потребности в воде
2.2.5 Расчет потребности в электроэнергии
2.2.6 Технико-экономические показатели
2.2.7 Охрана труда на стройплощадке
2.2.8 Противопожарные мероприятия на стройплощадке
2.2.9 Мероприятия по защите окружающей среды
2.3 Технологическая карта
2.3.1 Область применения
2.3.2 Определение номенклатуры работ
2.3.3 Выбор комплекта машин для производства
2.3.4 Подсчет объемов работ
2.3.5 Калькуляция затрат труда
2.3.6 Расчет состава бригады
2.3.7 Нормокомплект
2.3.8 Контроль качества
2.3.9 Техника безопасности
2.3.10 Технико-экономические показатели
Заключение
Список использованных источников
Приложение 1 Локальный сметный расчет
Приложение 2 График производства работ
Дата добавления: 01.09.2022
ДП 397. Дипломный проект (колледж) - Проектирование электроснабжения и осветительной установки шлифовального цеха на базе предприятия ПАО Астраханьэнерго | Компас

Произведены расчёты силовой нагрузки потребителей цеха, устройств компенсации реактивной мощности с последующим пересчётом расчётной нагрузки, в результате чего повысился коэффициент мощности, уменьшились потребление полной мощности и расчётный ток, а это экономия проводниковой продукции и снижение потерь – энергосбережение. Выбраны силовые трансформаторы, медные кабели ВВГ для внутрицеховой сети, вводной силовой кабель с изоляцией из сшитого полиэтилена и оболочкой из полиэтилена, проверены по потерям напряжения, механической прочности электрических сетей, надежности срабатывания защитной аппаратуры при перегрузках и токах КЗ.


ВВЕДЕНИЕ 
1 РАСЧЕТНО-КОНСТРУКТОРСКАЯ ЧАСТЬ 
1.1 Характеристика объекта проектирования 
1.2 Выбор рода тока, напряжения и схемы внутреннего электроснабжения 
1.2.1 Примерная схема электроснабжения цеха 
1.2.2 Выбор распределительных устройств 
1.3  Освещение цеха 
1.3.1 Ремонтное освещение 
1.3.2 Выбор осветительных щитков 
1.3.3 Проектирование осветительной сети 
1.3.4 Расчетно - монтажная схема 
1.4 Расчет силовых нагрузок 
1.5 Выбор силовых трансформаторов и компенсирующих устройств 
1.6 Выбор оборудования ТП на стороне 0.4 кВ 
1.7 Выбор пускозащитной аппаратуры 
1.8 Проектирование силовой сети, проверка по потере напряжения 
1.9 Проверка защитной аппаратуры на чувствительность при однофазных токах  короткого замыкания 
1.10 Разработка электропривода шлифовального станка 
1.10.1 Выбор аппаратуры управления и защиты 
1.10.2 Разработка принципиальной схемы управления 
2 ОРГАНИЗАЦИОННО-ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ 
2.1 Организация электромонтажных работ 
2.2 Планирование электромонтажных работ 
2.3 Охрана труда и техника безопасности при монтаже    электрооборудования 
3 ЭКОНОМИЧЕСКАЯ ЧАСТЬ 
3.1 Определение сметной стоимости электромонтажных работ 
3.2 Расчет материальных затрат 
3.2.1 Отчисления на страховые взносы 
3.2.2 Расчет прочих затрат 
3.2.3 Расчет плановой себестоимости ЭМР 
3.3 Расчет калькуляции трудовых затрат 
3.4 Расчет численного, профессионального и квалификационного состава  рабочих 
3.5  Расчет срока  выполнения работ 
3.6 Определение экономической эффективности выполнеия электромонтажных работ 
3.7 Технико – экономические показатели выполнения электромонтажных работ 
ЗАКЛЮЧЕНИЕ 
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 
ПРИЛОЖЕНИЕ А Светотехническая таблица 
ПРИЛОЖЕНИЕ Б Расчетно - монтажная схема 
ПРИЛОЖЕНИЕ В Принципиальная схема распределительной сети 
ПРИЛОЖЕНИЕ Г Принципиальная схема питающей сети 
ПРИЛОЖЕНИЕ Д Схема электрическая принципиальная соединения ТП 
ПРИЛОЖЕНИЕ Е Перечень элементов принципиальной схемы электрических соединений ТП


1. План силовой сети
2. План осветительной сети
3. Схема управления станка
4. Схема питания станка


Цеховая ТП получает ЭСН от ГПП завода по кабельной линии длиной 1 км, напряжением - 10кВ. Расстояние от энергосистемы до ГПП - 4км, линия ЭСН - воздушная. В перспективе от этой же ТО предусмотрено ЭСН других участков с расчетными мощностями: Рр.доп = 95 кВт, Qр.доп = 130 кВАр.
На штамповочном участке требуется частое перемещение оборудования. Количество рабочих смен - 2. По надежности бесперебойности ЭСН оборудование относится к 3 категории. Грунт в районе АЦ - супесь с температурой +22С. Каркас здания цеха смонтирован из блоков - секций длиной 6 м каждый. Размеры цеха А * В * Н = 48 * 30 * 8 м. Вспомогательные помещения двухэтажные высотой 3,6м.
Перечень оборудования АЦ дан в таблице 1. Мощность электропотребления (Рэп) указана для одного электроприемника. Расположение основного оборудования показано на плане (Рисунок 1)
                        Основные показатели проекта:
    I секция шин:                                            II секция шин:
                           Установленная мощность:
   Руст = 120,5 кВт                                         Руст = 89,93 кВт 
Расчетные мощности:
- активная:  Р = 50,55 кВт                           Р = 53,99 кВт 
- реактивная:  Q = 36,9 кВАр                     Q = 30,72 кВАр
- полная:  S = 62,65 кВА                             S = 62,13 кВА
Коэффициент мощности:
- до компенсации:          0,81                       0,87
- после компенсации:    0,99                       0,99






В данном проекте выполнено проектирование системы электроснабжения участка автоматизированного цеха. Оптимизация параметров систем электроснабжения достигнута путем правильного выбора напряжений, определения электрических нагрузок и требований к бесперебойности электроснабжения.
Произведены  расчёты  силовой нагрузки  потребителей цеха, устройств компенсации реактивной мощности с последующим  пересчётом расчётной нагрузки,  в результате чего повысился коэффициент мощности, уменьшились потребление полной мощности и расчётный ток, а это экономия проводниковой продукции и снижение потерь – энергосбережение. Выбраны силовые трансформаторы, медные кабели ВВГ для  внутрицеховой   сети, вводной силовой кабель с изоляцией из сшитого полиэтилена и оболочкой из полиэтилена, проверены по потерям напряжения, механической прочности электрических сетей,  надежности срабатывания защитной аппаратуры при перегрузках и токах КЗ.
Выполнены расчёты заземления и выбраны соответствующие устройства.
Произведён расчёт релейной защиты.
Выбрана к установке  цеховая  КТП с сухим силовым трансформатором: 2КТП-100/10/0,4-02 У3.
Конечным итогом является приобретение знаний, умение пользоваться теоретическими и справочными материалами, на основании которых возможно принятие обоснованного решения и оптимальное построение схемы системы электроснабжения.
Дата добавления: 08.09.2022
КП 398. Курсовой проект - Проектирование механического оборудования пассажирского лифта с нижним машинным помещением | Компас

ВВЕДЕНИЕ    5
1 СТАТИЧЕСКИЙ И КИНЕМАТИЧЕСКИЙ РАСЧЕТ    6
1.1 Определение натяжения ветвей, массы и размеров тяговых канатов    6
1.2 Определение размеров противовеса    8
1.3 Выбор диаметра канатоведущего шкива    8
1.4 Определение массы подвижных частей механизма подъема    9
1.5 Расчет сопротивлений перемещению подвижных частей лифта    9
1.6 Направляющие башмаки    12
1.7 Расчет натяжения канатов подвески кабины и противовеса в рабочих и испытательных режимах    12
1.8 Расчет соотношения натяжения канатов, консольной и окружной нагрузки канатоведущего шкива    14
1.9 Расчетное обоснование параметров и выбор узлов лебёдки    16
2 ДИНАМИЧЕСКИЙ РАСЧЁТ    18
2.1 Определение приведённых моментов внешних сопротивлений    18
2.2 Определение избыточных моментов    20
2.3 Расчет приведенной к ободу КВШ массы поступательно движущихся частей    21
2.4 Расчет приведенного момента инерции поступательно движущихся масс    22
2.5 Расчет уточненного значения приведенного момента инерции динамической системы привода в каждом из 10 режимов    23
2.6 Расчет ускорений при пуске, генераторном торможении, выбеге и механическом торможении    23
2.7 Расчет точности остановки кабины    25
2.8 Расчет тяговой способности и обоснование формы поперечного профиля канавок обода КВШ    29
3 РАСЧЕТ ЛОВИТЕЛЕЙ    33
ЗАКЛЮЧЕНИЕ    34
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ    35


0.4 т. Подвеска прямая. С нижним машинным помещением. Кинематическая схема 2.


Схема лифта с нижним машинным помещением облегчает эксплуатацию, ремонт лифтового оборудования и существенно снижает уровень структурного шума в несущих конструкциях здания.
К недостаткам схем лифта с нижним машинным помещением следует отнести необходимость в дополнительном блочном помещении, расположенном над шахтой; уменьшение долговечности канатов и увеличение их количества; повышение нагрузки на конструкцию здания и увеличение капитальных затрат.

ЗАКЛЮЧЕНИЕ
В результате проектирования было разработано механическое оборудование пассажирского лифта. Были определены основные конструктивные параметры кабины, шахты, противовеса, КВШ. Был проведен статический, кинематический и динамический расчёты. Также определены и рассчитаны элементы активной безопасности лифта. Спроектированный лифт обладает следующими характеристиками:



Дата добавления: 31.01.2022







ДП 399. Дипломная работа - Оценка тех. состояния мостового крана и определение его остаточного ресурса | AutoCad

Введение
1. Общие сведения об экспертизе промышленной безопасности
1.1 Организация и порядок проведения основных работ по экспертизе и обследованию ПТМ.
1.1.1 Предварительный этап проведения экспертизы.
1.1.2 Оперативная (функциональная) диагностика.
1.1.3 Экспертное обследование (экспертиза) крана.
1.2 Оценка остаточного ресурса.
1.2.1 Определение остаточного ресурса опасных производственных объектов. Общие положения.
1.2.2 Требования, предъявляемые при оценке технического состояния МК и механизмов ПТМ.
1.2.3 Оценка технического состояния крана.
2. Расчётная часть. Расчёт остаточного ресурса
2.1 Определение нагрузки на пролётную балку
2.2 Определение нагрузки от массы концевой балки
2.3 Определение моментов инерции и моментов сопротивления сечений балок
2.4 Расчёт концевой балки
2.5 Расчёт пролётных балок
2.6 Расчёт фактического режима работы крана, согласно ИСО 43/1
(ГОСТ 25546-82) и данные о фактических условиях эксплуатации крана
2.7 Расчёт остаточного ресурса мостового крана.
2.8 Вывод
3. Разработка технологического процесса изготовления зубчатого колеса.

В ходе определения остаточного ресурса мостового крана рег. № 54815, Q = 15 т пролетом 29,0 м, установлено следующее:
а) к моменту наступления назначенного срока эксплуатации классификационная группа (режим работы) крана будет соответствовать А7;
б) состояние механизмов - удовлетворительное.
в) коррозия расчетных элементов не превышает 5,0 %.
г) уровень технического обслуживания при эксплуатации крана - удовлетвори-тельный.
Было произведено ознакомление с нормативно-технической литературой по диагностированию и экспертизе промышленных опасных объектов и машин, рассчитан остаточный ресурс по критерию трещиностойкости металлоконструкции крана и представлен прогноз развития выявленных дефектов.

Исходные данные


0.4. База тележки B



Дата добавления: 25.12.2015
КП 400. Курсовой проект - 12-ти этажный панельный жилой дом на 48 квартир 21,9 х 21,9 м в г. Астрахань | AutoCad

ВВЕДЕНИЕ
1. ИСХОДНЫЕ ДАННЫЕ ДЛЯ ПРОЕКТИРОВАНИЯ
2. ОБЪЕМНО-ПЛАНИРОВОЧНОЕ РЕШЕНИЕ ЗДАНИЯ
2.1. Планировочная схема здания. Форма и размеры здания
2.2. Количество и состав квартир
2.3. Выполнение требований пожарной безопасности. Пути эвакуации
2.4. Организация входной группы
2.5. Выполнение санитарных норм
2.6. Инженерные системы и оборудование здания
2.7. Описание фасадов
3. КОНСТРУКТИВНОЕ РЕШЕНИЕ ЗДАНИЯ
3.1. Общее конструктивное решение
3.2. Фундаменты и конструкции цокольного этажа
3.3. Стены
3.3.1. Наружные стены
3.3.2. Внутренние несущие стены
3.5. Лестницы и лифты
3.6. Крыша, кровля
3.7. Санитарно-техническое оборудование и вентиляция
3.8. Заполнения оконных и дверных проемов
3.10. Полы
4. ТЕПЛОТЕХНИЧЕСКИЕ РАСЧЕТЫ
5. ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ ПРОЕКТНОГО РЕШЕНИЯ
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ


Объемно-планировочная схема здания – секционная.
Форма и размеры секции здания в плане – 21,9*21,9 м.
Высота помещений – 3 м.
Высота здания ~ 40,5 м.
Общее количество квартир – 48.
Состав квартир на этаже – 2 трехкомнатных квартир, 2 однокомнатные.


Конструктивная система – бескаркасная.
Конструктивная схема здания – с перекрестными несущими стенами, с опиранием перекрытий по 3 сторонам.
Размеры:
пролетов – от 3,6 м до 6 м;
шагов – от 0,9 м до 3 м.
Применен укрупненный модуль – 3М.
Фундаменты и конструкции цокольного этажа:
Фундаменты под наружные и внутренние стены – ленточный панельный.
Фундамент требуется привязать к конкретной строительной площадке, в проекте рассмотрен один из возможных вариантов.
Цокольные панели:
Под наружные стены – сплошные с оконными проемами и фасадной отделкой.
Под внутренние стены –с проемами для прохода и пропуска коммуникаций.
Глубина заложения – 2,4 м.
Гидроизоляция:
Вертикальная – обмазка горячим битумом за 2 раза.
Горизонтальная – гидроизоляция цементным раствором в составе 1:2.
Фундамент под шахты лифта – монолитная плита размером 1,95*4,2 м, установлена
выше фундаментных подушек под несущие стены.
Фундаменты под вентиляционные блоки – сборные, большего размера чем под несущие стены.
Спуск в подвал – вход изолирован от лестничной клетки и организован через отдельную дверь с улицы.
Стены:
Наружные стены:
Разрезка – однорядная на одну комнату.
Конструкция – трехслойные панели.
Толщина – 250 мм, из условий несущей способности и теплотехнических требований.
Конструкция вертикальных – профилированные закрытые.
Горизонтальных стыков – профилированные закрытые.
Связи с другими элементам – петлевые на скобах.
Внутренние несущие стены:
Разрезка – однорядная по высоте этажа и по длине кратная конструктивной ячейке.
Конструкция – однослойный панели.
Толщина из условий несущей способности и звукоизоляции:
•    межквартирные – 160 мм;
•    внутриквартирные – 160 мм.
Конструкция вертикальных стыков – имеют шпоночные соединения.
Конструкция горизонтальных стыков – плоские.
Связи с другими элементами¬ – петлевые на скобах 
Перекрытия, балконы, лоджии:
Перекрытия
•    Цокольное – сплошное с опиранием по 3 сторонам.
•    Междуэтажное – сплошное с опиранием по 3 сторонам.
•    Чердачное – сплошное с опиранием по 3 сторонам.
Тип и номенклатура плит перекрытий:
Сплошные плиты перекрытия под полезную нагрузку 3 кН/м2.
1)    П3-30.45.12 
2)    П3-30.48.12
3)    П3-36.56.12
4)    П3-30.54.12
5)    П3-33.66.12
6)    П3-36.36.12
7)    П3-30.45.12
8)    П3-18.72.12
9)    П3-27.66.16
10)    П3-27.45.12
11)    П3-30.45.12 
12)    П3-30.48.12
13)    П3-36.56.12
14)    П3-30.54.12
15)    П3-33.66.12
16)    ПЗ-12.21.16
Анкеровка – свариваются соединительными стержнями диаметром 12 мм к петлевым выпускам.
Организация проемов под вентиляционные блоки – 
Устройство балконов – представляют собой плиту перекрытия опирающуюся на ризалит и несущие стены, предусматриваются термовкладыши.
Лестницы и лифты:
Конструктивное решение – сборные из крупных элементов.
Конструкция:
Площадок – сплошные, с опиранием на приливы этажных и меж этажных площадок.
Маршей – с плитными, без фризовых ступеней.
Лифтовые шахты:
Конструкция – кабина, подвешенная на стальных канатах и связанная с противовесом; лебедка в машинном отделении.
Обеспечение устойчивости
Фундамент под шахту лифта – монолитная бетонная плита, отделенная от примыкающих фундаментов; шахта – изолированное, отдельно стоящее сооружение консольного типа, не связанное с конструкциями здания. Крепление смежных объемных элементов сваркой к закладным деталям <9].
Обеспечение звукоизоляции:
Шахты лифтов и машинные помещения не примыкают к жилым комнатам. Между стенами шахты и конструкциями здания предусмотрены зазоры 20 мм, заполняемые просмоленной паклей и накрываются пластмассовыми плинтусами или накладками. 
Крыша, кровля:
Тип крыши, организация отвода воды.
Крыша с теплым проходным чердаком.
обеспечение устойчивости фризовых панелей
Контрфорсные стены.
несущая стена и железобетонная балка, лежащая на контрфорсных стенах.
Без рулонная кровля из утепленных ребристых железобетонных плит с уклоном 5%
и железобетонных лотковых плит с уклоном 3%
 
Дата добавления: 16.09.2022
ДП 401. Дипломный проект - Спортивный комплекс с 3-х уровневой подземной стоянкой 54 х 36 м в г. Москва | AutoCad

1. АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ РАЗДЕЛ
1.1. Данные участка местности для строительства
1.2. Генеральный план
1.3. Объемно планировочное решение здания
1.4. Требования предъявляемые к парковкам
1.5. Конструктивное решение
1.6. Инженерное обеспечение здания
1.7. Теплотехнический расчет
2. РАСЧЕТНО-КОНСТРУКТИВНЫЙ РАЗДЕЛ
2.1. Расчет фермы. Основные положения
2.2. Подсчет узловых нагрузок
2.3. Подбор сечений сжатых стержней
2.4. Подбор сечений растянутых стержней
2.5. Глубина заложения фундаментов
2.6. Нормативные и расчетные сопротивления грунтов основания при определении размеров подошвы фундаментов
2.7. Форма и размеры фундамента
2.8 Расчет осадки фундамента
3. ОРГАНИЗАЦИОННО-ТЕХНОЛОГИЧЕСКИЙ РАЗДЕЛ
3.1 Организационно-технологические схемы организации строительства
3.2. Краткая характеристика строящегося объекта
3.2.1. Выбор грузового механизма
3.2.2. Экономическое обоснование выбора крана
3.2.3. Сетевой график строительного объекта
3.2.4. Расчет складского хозяйства
3.2.5. Расчет временных зданий
3.2.6. Расчет временного водоснабжения
3.2.7. Расчет энергопотребления
3.3. Транспортное хозяйство
4. ЭКОНОМИЧЕСКИЙ РАЗДЕЛ
4.1. Назначение смет
4.2. Типы смет
4.3. Сводный сметный расчет
4.4. Объектные сметы
4.5. Локальные сметы
4.6. Структура сметной стоимости
4.7. Экономическая эффективность от сокращения продолжительности сроков строительства
5. РАЗДЕЛ БЕЗОПАСНОСТИ ЖИЗНЕДЕЯТЕЛЬНОСТИ
5.1. Анализ потенциальных опасностей и вредностей на строительной площадке при возведении объекта
5.2. Мероприятия по охране труда, обеспечение безопасности работающих на строительной площадке
5.3. Обеспечение пожарной безопасности в проекте здания
6. РАЗДЕЛ ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ


а) 4 х 10 м глубиной 0.4 м, предназначенный для обучения плаванию; 
б) 15 х 25 м глубиной 4 м, предназначенный для оздоровительного плавания и проведения соревнований.
На отметке второго этажа +3.300 размещены:
•методический кабинет;
•малый зал борьбы и бокса;
•инвентарная;
•вестибюль;
•буфет;
•смотровые балконы в спортивный зал и зал бассейна;
•подсобные помещения;
•администрация.
В подвальном помещении на -3,600 м    находятся    технические помещения для очистки и фильтрации воды в бассейнах.
В подземной части здания расположена автостоянка на 80 парковочных мест, и 9 парковочных мест для инвалидов, въезд в которую осуществляется через автоматические ворота. Высадка людей может производиться непосредственно на самой стоянке. Передвижение людей с автостоянки осуществляется на пассажирском лифте KONE грузоподъемностью 1600 кг и вместимостью до 21 чел. 


 Горизонтальная гидроизоляция фундаментов выполняется из двух слоев толя насухо, вертикальная - обмазкой горячим битумом за два раза.
За относительную отметку 0.000 принимается отметка чистого пола 1-го этажа.
Фундаменты под колонны, сечением 400x400 мм, глубиной заложения 1.8 м из железобетона. Несущими конструкциями здания является металлический каркас. Пространственная жесткость и устойчивость здания обеспечивается совместной работой продольных и поперечных стен с горизонтальными дисками перекрытий и покрытий.
Несущие стены здания выше отметки +0.100 возводятся из глинистого полнотелого пластического прессования М-100 плотностью от к=1700.2000 кг/см3 на цементном растворе М-50 (ГОСТ 530-80).
Лицевой слой кладки наружных стен вести одновременно из лицевого кирпича пластичного прессования М-100 АМ400 кг/см.
Внутренние стены здания возводятся из силикатного кирпича пластического прессования М-100 (ГОСТ 530-80) на цементном растворе М-25.
Горизонтальная гидроизоляция в стенах устраивается на отметке 0.250 и выполняется из двух слоев рубероида.
Кладку кирпичных перегородок вести одновременно со стенами и выполнять из силикатного кирпича М-75 (ГОСТ 530-80) на цементном растворе М-25.
Покрытие осуществляется плитами типа ТТ. Перекрытие осуществляется многопустотными плитами, укладываемые на балки. Балки установлены на кирпичные стены с шагом 6 м. Опорные участки многопустотных плит заделываются бетоном М-200.
Монолитные участки покрытий и перекрытий выполняют бетоном М-200. Стыки между плит заполняются цементным раствором М-200.
Железобетонные плиты перекрытий и покрытий, перемычки, ригели и лестничные марши с полуплощадками укладывать по слою свежеуложенного цементно-песчаного раствора М-100. Кровля рулонная, из четырех слоев рубероида на битумном мастике с защитным слоем гравия. Сброс воды с кровель по железобетонным конструкциям - организованный, внутренний.
Лестничные марши с полуплощадками выполняются из сборных железобетонных конструкций. Лестница выхода на кровлю - металлическая. Антикоррозийную защиту конструкций производить в соответствии со СНиП П-28-73.
Цоколь здания до отметки -0.450 облицовывается мраморной крошкой.
Окна здания выполнены в деревянных переплетах двойного остекления, в бассейне и спортивном зале тройное остекление из витринного стекла в металлических переплетах.
Двери деревянные (глухие и с остеклением). Отделка помещения предусмотрена в соответствии с их назначением.
В центральном корпусе по второму этажу выполнены подвесные потолки.
Отделка стен и перегородок - лицевой кирпич, масляная окраска по штукатурке, глазированная плитка, деревянные панели. При производстве отделочных работ применить теплостойкую штукатурку.
Полы – мозаичные, керамические, бетонные, паркет, палубный брус.
Конструкции подземной части:
Колонны здания и железобетонные диафрагмы жесткости обеспечивают передачу нагрузок от надземной части на фундаментную плиту, наружные стены обеспечивают тепловой режим подвала.
Колонны под зданием – монолитные железобетонные 500х500 мм.
Внутренние стены – железобетонные диафрагмы жесткости приняты монолитными. Диафрагмы имеют проемы для пропуска инженерных коммуникаций и для перехода обслуживающего персонала в процессе ремонта и эксплуатации инженерного оборудования.
Для вертикальной гидроизоляции фундаментной плиты и подземной части применяются 2 слоя гидростеклоизола и 2 слоя обмазочной гидроизоляции на битумной основе.
Наружные стены подземного гаража – монолитные железобетонные толщиной 560 мм.


При проектировании выпускной квалификационной работы была определена цель – анализ способов проектирования подземной многоуровневой стоянки.
Реализации цели выпускной квалификационной работы способствовало решение следующих задач:
1.Изучены теоретические основы проектирования многоуровневой подземной стоянки.
2.Рассмотрены порядок и способы проектирования многоуровневой подземной стоянки.
В проекте использованы нормативные документы по проектированию и строительству подземных парковок, учтены соответствующие климатические условия, описаны решения по генеральному плану участка строительства, решены вопросы по объёмно-планировочным и конструктивным решениям здания, рассмотрены вопросы по проектированию инженерных сетей, рассчитано противопожарное обеспечение здания и выполнен теплотехнический расчет ограждающих конструкций. 
Подводя итог исследования, касающегося проектирования универсального спортивного зала с многоуровневой стоянкой, нами сделан вывод о том, что, вопросы об особенностях и методах проектирования многоуровневой стоянки являются дискуссионными и весьма актуальными, требующими определенного осмысления, поскольку это требует значительных экономических вложений. 
 
Дата добавления: 07.10.2022
КП 402. Курсовой проект - 9-ти этажный 36-ти квартирный жилой дом с пристройкой центральная сберегательная касса на 25 сотрудников в г. Кемерово | AutoCad

ВВЕДЕНИЕ    3
1.ИСХОДНЫЕ ДАННЫЕ    5
2.ГЕНЕРАЛЬНЫЙ ПЛАН    6
3.ФУНКЦИОНАЛЬНЫЙ ПРОЦЕСС    7
4.ОБЪЕМНО-ПЛАНИРОВОЧНЫЕ РЕШЕНИЯ ПРОЕКТИРУЕМОГО ЗДАНИЯ    9
5.КОНСТРУКТИВНЫЕ РЕШЕНИЯ    11
5.1 Девятиэтажная блок-секция рядовая-торцевая на 36 квартир    11
5.1.1 Фундаменты    11
5.1.2 Наружные стены    11
5.1.3 Внутренние стены, перегородки    12
5.1.4 Перекрытия    12
5.1.5 Санузлы    13
5.1.6 Лестницы    13
5.1.7 Балконы и лоджии    13
5.1.8 Лифтовая шахта    14
5.1.9 Покрытия    14
5.1.10 Крыша    14
5.1.11 Двери наружные    15
5.1.12 Двери внутренние    15
5.1.13 Окна и балконные двери    15
5.1.14 Встроенное оборудование    16
5.1.15 Полы    16
5.1.16 Оснащения здания    17
5.1.17 Отделка внутренняя и наружная    17
5.1.18 Инженерное оборудование    17
5.2 Центральная сберегательная касса. В конструкциях 1.4, общей площадью помещений 446,21 м2    19
5.2.1 Фундаменты    19
5.2.2 Колонны    19
5.2.3 Балки    20
5.2.4 Покрытия    20
5.2.5 Перемычки    20
5.2.6 Наружные стены    21
5.2.7 Перегородки    21
5.2.8 Крыша    21
5.2.9 Полы    22
5.2.10 Окна    22
5.2.11 Двери    22
5.2.12 Отделка внутренняя и наружная    23
5.2.13 Инженерное оборудование    23
6.ЗАКЛЮЧЕНИЕ    24
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ    25
ПРИЛОЖЕНИЕ А. ТЕПЛОТЕХНИЧЕСКИЙ РАСЧЕТ ОГРАЖДАЮЩЕЙ КОНСТРУКЦИИ    26


На этаже в доме запроектированы 1 трехкомнатная, 2 двухкомнатные, 1 однокомнатная квартиры.
Фундаменты - свайные безростверковые, сваи по ГОСТ 19804.4-78
Наружные стены выполнены из однослойных панелей, керамзитобетонные из легкого бетона. Толщина панелей согласно теплотехнического расчета 510 мм.
Внутренние стены запроектированы из железобетонных панелей толщиной 160 мм. Перегородки керамзитобетонные толщиной 80 мм. Они запроектированы глухими и с одним проемом, одно - и двух консольным. 
Перекрытия выполняются из сборных железобетонных плит с круглыми пустотами толщиной 220 мм. Марка бетона для изготовления перекрытий должна быть не ниже М-300. 
Лестницы - сборные железобетонные марши и площадки, марки Часть 10. Раздел 10.4-1-102. 
Балконы и лоджии - сборные железобетонные плиты толщиной 160 мм. Ограждения выполнены из железобетонных экранов. 
Лифтовая шахта состоит из железобетонных объемных тюбингов. По серии 1.189-6
В проектируемом здании устраивается плоская крыша с уклонами 0,070 с теплым чердаком и внутренним водостоком. Дождевые стоки сбрасывается на отмостку здания по системе внутренней ливневой канализации с последующем отводом стоков по рельефу поверхности земли в колодцы наружней ливневой канализации. Установка приемной ливневой воронки на кровле выполняется по одному из типовых узлов, выполненных в графической части проекта.
К наружным дверям относятся двери входные. Она изготавливается по серии 1-136-11, остекленные и щитовые.
Двери внутренние изготавливаются щитовой конструкции по ГОСТ 6629-74. Входные двери квартир глухие марки Д 21-9. 
Двери жилых комнат марки ДГ 21-8. В санузлах и на балконах устанавливаются двери ДГ-21-7.
Полы первого этажа выполняются дощатые по всему жилому этажу (кроме санузлов, коридоров общего пользования). На последующих этажах выполняются полы из линолеума на теплой основе, уложенного по цементно-песчаной стяжке (выравнивающего слоя), выполненной по звукоизоляционному слою. 


Фундаменты - сборные железобетонные башмаки по серии1.411.1.1-4, железобетонные плиты по серии 1.112-5. Блоки бетонные ГОСТ 13579-78
Колонны - сборные железобетонные по серии 1.423.1-3/88.
Балки - сборные железобетонные прямоугольные по серии1.462.1.1.10/89.
Покрытия - сборные железобетонные по серии 1.465.1. и ис-01-4.
Перемычки - сборные железобетонные по серии 1.139-1 выпуск 1, по серии кэ-01-08 выпуск 2.
Наружные стены выполнены из кирпича, толщина стены 510мм. 
Перегородки кирпичные, толщиной 80 мм.
В проектируемом здании устраивается плоская крыша, невентилируемая с уклонами 0,070, рулонная из 4-х слоев рубероида. Утеплитель пенобетон γ=400 кгс/м3. Водосток внутренний.
 
Дата добавления: 12.10.2022
КП 403. Курсовой проект - Тепломассообмен ТГВ. Бассейн на 132 зрительных места | Компас

На основании теплового баланса подбирается необходимое оборудование ИТП, также рисуется схема ИТП.
Также проект включает в себя расчет систем водоснабжения и канализации.

Оглавление:
1.Исходные данные 4
2.Теплотехнический расчет ограждающих конструкций 6
3. Расчет теплопоступлений 9
3.1 Расчет теплопоступлений от людей 9
3.2 Расчет теплопоступлений от внутреннего освещения 10
3.3 Расчет теплопоступлений от дежурного отопления 10
3.4 Расчет теплопоступлений от солнечной радиации через покрытие 11
3.5 Расчет теплопоступлений от солнечной радиации через остекление 13
4. Расчет влагопоступлений 15
4.1 Расчет влагопоступлений от людей 15
4.2 Расчет влагопоступлений с поверхности зеркала воды бассейна 15
5. Расчет объемов выделения углекислого газа 16
6. Расчет потерь теплоты 17
6.2 Расчет потерь теплоты на испарение воды в бассейне 23
6.3 Расчет потерь теплоты на нагрев инфильтрующегося воздуха 23
7. Составление балансов для периодов года 25
8. Горячее и холодное водоснабжение 26
8.1 Определение расчетных расходов 27
8.2 Гидравлический расчет 29
9. Отопление 34
9.1 Конструирование системы отопления 34
9.2 Подбор отопительных приборов 36
9.3 Гидравлический расчет 39
9.4 Подбор воздушной завесы 47
10. Система вентиляции и кондиционирования воздуха 48
10.1 Расчет воздухообмена 48
10.2 Построение I-D диаграмм 50
10.3 Расчет и подбор оборудования 57
10.4 Определение нагрузок на системы тепло- и холодоснабжения 64
10.5 Гидравлический расчет 66
11. Индивидуальный тепловой пункт 68
Список литературы 75

Состав наружной стены по АР
Силикат. кирпич
Пенополистирол (плиты) ρ=20 кг/м3
Воздушная прослойка
Глиняный кирпич

Состав покрытия по АР
Жб плита
Цем-песч. Стяжка
Пенополистирол (плиты) ρ=20 кг/м3
2 слоя техноэласта

Тип пола №1 по АР, пол других помещений по АР
линолеум на теплозвукоизолирующей
подоснове (ГОСТ 18108-80)
Цем-песч. Стяжка
Слой руберойда
Пенополистирол (плиты) ρ=20 кг/м3
Бетонная подготовка

Тип пола №2 по АР, пол бассейна и примыкающих. зон
Керамическая плитка на слоей цем.- пес раствора
Цем-песч. Стяжка
Слой руберойда
Пенополистирол (плиты) ρ=20 кг/м3
Бетонная подготовка
Дата добавления: 20.11.2022
ДП 404. Дипломный проект - Реконструкция разводного моста через реку Нева в г. Санкт-Петербург | AutoCad

1. Историческая справка 3
2. Конструкция существующего моста 10
2.1. Металлические стационарные пролетные строения 10
2.2. Разводное пролетное строение 14
2.3. Опоры 20
2.4. Опорные части 22
2.5. Арочный береговой пролет 23
3. Результаты обследования 25
3.1. Общие данные 27
3.2. Результаты обследований 28
3.3. Анализ результатов обследования. 57
4. Оценка грузоподъемности стационарных пролетных строений 63
4.1. Железобетонная плита проезжей части. 64
4.2. Продольные балки проезжей части. 72
4.3. Поперечные балки. 77
4.4. Главные балки пролетного строения. 82
4.5. Выводы 93
5. Варианты реконструкции стационарных пролетных строений 94
5.1. Вариант 1 95
5.2. Вариант 2 96
5.3. Вариант 3 97
5.4. Сравнение вариантов и выбор оптимального варианта реконструкции моста 99
5.5. Оценка влияния выбранного варианта реконструкции моста на окружающую природную среду 100
6. Расчет конструкций сталежелезобетонного пролетного строения (Lр=47,1+41,3+35,2 м) 105
6.1. Расчет железобетонной плиты проезжей части 105
6.2. Расчет главных балок пролетного строения 123
7. Расчет промежуточной опоры 135
7.1. Расчет сечения опоры 135
7.2. Проверка несущей способности свайного фундамента опоры 5 137
8. Проект организации строительства 139
8.1. Краткая характеристика условий строительства 140
8.2. Определение потребных ресурсов для строительства 142
8.3. Организация стройплощадки 145
8.4. Описание производства работ 146
8.5. Работы в зимнее время 147
9. Сметно-финансовый расчет 148
9.1. Локальный сметный расчет 148
9.2. Перерасчет в текущие цены 149
9.3. Сводный сметный расчет 150
10. Охрана труда 152
10.1. Общие сведения 155
10.2. Анализ опасных и вредных производственных факторов 157
10.3. Разработка мероприятий по предупреждению возникновения опасных и вредных производственных факторов 158
10.4. Расчет освещения площадки проведения работ 159
11. Безопасность в чрезвычайных ситуациях 160
11.1. Основные меры защиты людей от ионизирующих излучений 160
11.2. Разработка вариантов РРЗ. 161
11.3. Оценка радиационной обстановки на строительной площадке и выбор режима радиационной защиты.164
Список использованной литературы 171


1.СИТУАЦИОННЫЙ ПЛАН РАСПОЛОЖЕНИЯ МОСТА
2.ФАСАД СУЩЕСТВУЮЩЕГО МОСТА
3.ВАРИАНТЫ РЕКОНСТРУКЦИИ МОСТА (Вариант 1)
4.ВАРИАНТЫ РЕКОНСТРУКЦИИ МОСТА (Вариант 2)
5.ВАРИАНТЫ РЕКОНСТРУКЦИИ МОСТА (Вариант 3)
6.КОНСТРУКЦИЯ ПРОЛЕТНОГО СТРОЕНИЯ
7.РЕГУЛИРОВАНИЕ УСИЛИЙ  В ПРОЛЕТНОМ СТРОЕНИИ
8.ПОПЕРЕЧНЫЕ СЕЧЕНИЯ
9.Конструкция промежуточной опоры
10.ТЕХНОЛОГИЧЕСКАЯ СХЕМА ПРОИЗВОДСТВА РАБОТ
11.КАЛЕНДАРНЫЙ ГРАФИК РЕКОНСТРУКЦИИ МОСТА
12.СТРОЙПЛОЩАДКА
13.ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ


Полная длина моста по верху между устоями 331 м. Ширина проезжей части 18 м, ширина тротуаров по 2,75 м, ширина между перилами в свету 24,0 м. Разводной пролет расположен в средней части, длина пролета в свету 43,2 м. Три пролета с каждой стороны разводного пролета перекрыто неразрезным балочным пролетным строением с железобетонной плитой проезжей части. Крайний правобережный пролет перекрыт железобетонным арочным пролетным строением пролетом в свету 21,07 м.
Нагрузки
По отношению нагрузок мост отнесен к классу 1-а. Мост рассчитан на пропуск временной нагрузки по схеме Н10 Цудортранса, состоящую из колонны грузовиков весом 10 тонн с одним утяжеленным грузом весом 13 тонн, трамвайного поезда из двух четырехосных вагонов весом по 32 тонны, с нагрузкой на ось 8 тонн, нагрузки от толпы разной интенсивности (300 и 400 кг/м2), особой нагрузки (гусеничной общим весом 19,8 т) в виде двух полос интенсивностью 3 т/п.м. на длине 3,3 м, ширине 0,46 м и расстоянием между осями полос 2,3 м, и железнодорожной нагрузки с паровозом серии О-в.
Динамический коэффициент определяется по формуле 1+μ=1+15/(37.5+L). Колебания температуры +350С до –350С.
Допускаемые напряжения
При расчете допускаемые напряжения были приняты по единым нормам строительного проектирования. Для металлоконструкций пролетного строения  для стали 3 (нормальная) основное допускаемое напряжение было принято 1400 кг/см2, для катков, шарниров, балансиров и подушек опорных частей для литой стали Л2 основное допускаемое напряжение принято 1800  кг/см2. Для арматуры из стали Ст 3 допускаемым напряжением принято 1250 кг/см2. Для бетона плиты R28=170 кг/см2, допускаемое напряжение на сжатие при изгибе от основной нагрузки принято 75 кг/см2. Для арочного пролетного строения R28=130 кг/см2, допускаемое напряжение на сжатие при изгибе от основной нагрузки принято 60 кг/см2.
Допускаемые напряжения для каменной кладки приняты, для гранитной кладки из штучного камня 80 кг/см2, для бутовой кладки 25 кг/см2.


Полная длина моста - 328,2 м
Полная длина стационарных пролетных строений - 49500 м
Длина разводного пролета - 49,5 м
Наибольший стационарный пролет - 47,1 м
Объем железобетона пролетных строения - 5533,2 м3
Масса металла пролетных строений - 1850 т




Дата добавления: 29.11.2022
КП 405. Курсовой проект - Проектирование металлической балочной клетки 24,0 х 8,4 м | AutoCad

1 Исходные данные 2
2 Разработка монтажной схемы балочной клетки 3
3Расчет стального настила 8
3.1 Статический расчет настила 8
3.2 Конструктивный расчет настила 10
4 Расчет балки настила Б2 14
4.1 Статический расчет балки настила Б2 14
4.2 Конструктивный расчет балки настила Б2 16
5 Расчет главной балки Г2 20
5.1 Статический расчёт главной балки Г2 20
5.2 Конструктивный расчет главной балки Г2 22
5.3 Изменение сечения главной балки Г2 25
5.4 Проверка местной устойчивости пояса главной балки Г2 29
5.5 Проверка местной устойчивости стенки главной балки Г2 30
6 Расчет поясных сварных швов для главной балки Г2 35
7 Сопряжение балок настила Б2 с главными балками Г2 37
8 Расчет опорного ребра главной балки Г2 41
9 Монтажный стык главной балки Г2 44
10 Расчет колонны К4 47
10.1 Расчетное усилие и расчетные длины колонны К4 47
10.2 Подбор сечения сплошной колонны К4 48
10.3 Подбор сечения сквозной колонны К4 50
10.4 Расчет баз колонны К4 55
10.4.1 Расчет базы колонны сплошного сечения 55
10.4.2 Расчет базы колонны сквозного сечения 58
10.5 Расчет оголовков колонны К4 62
10.5.1 Расчет оголовка сплошной колонны 62
10.5.2 Расчет оголовка сквозной колонны 63
Список литературы 66

Исходные данные:
Шаг балок настила 1,2
Пролет балок настила 4,2
Пролет главных балок 12,0
Размер балочной клетки 2L x 2l
Нормативная постоянная нагрузка 15
Нормативная временная нагрузка 26
Отметка верха настила 5,6
Сталь настила, стенки главной балки С245
Сталь балок настила С255
Сталь поясов главной балки С390
Сталь колонн С345
Класс бетона фундамента В12,5
Коэффициент надежности по нагрузке (постоянной) 1,1
Коэффициент надежности по нагрузке (временной) 1,2


Пространственная жесткость ц неизменяемость балочной клетки обеспечивается жестким креплением настила к балкам, колонн к фундаменту, а также связями по колоннам.
Заводские соединения стальных элементов - на сборке. Монтажные соединения стальных элементов - на болтах и сварке.
 
Дата добавления: 05.12.2022

На страницу 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

© Rundex 1.2
Cloudim - онлайн консультант для сайта бесплатно.