Добавить проект
Прочитать правила
Платный доступ
Авторизация:
Информация


%20%20

Найдено совпадений - 1044 за 0.00 сек.


271. Розрахунок щеплення ГАЗ-53 | Компас
Вступ

Задачею курсового проектування являється створення машини або механізму, які повністю відповідала б потребам народного господарства, що дає найбільший економічний ефект і які мали б найбільш високі техніко-економічні експлуатаційні властивості. Головними показниками являються: висока продуктивність, економність, міцність, надійність, мала вага і металоємкість, габарити, енергоємність, об'єм і вартість ремонтних робіт, витрати на оплату праці і т.д.
Проектуючи автомобіль, конструктор повинен добавити збільшення її рентабельності і підвищення економічного ефекту за весь період експлуатації. Збільшення економічного ефекту залежить від великого комфорту технологічних, організаційно-продуктивних і експлуатаційних факторів. При проектуванні автомобіля його конструкції придають відповідні властивості, які прийнято називати потенціальними. Ступінь реалізації таких властивостей, а відповідно і якостей виробу, залежить від рівня конструкторської переробки, прийнятої технології його виготовлення та використаних матеріалів.
Для обговорення можливості використання того чи іншого автомобіля в заданих умовах експлуатації, вироблений ряд критеріїв, які дозволяють об'єктивно оцінити відповідність існуючої чи перспективної конструкції автомобіля представленим вимогам. В основі критерій, характеризуючих ефективність експлуатації автомобіля, використовують відносність затрат на перевезення 1т вантажу.
Транспорт можна вважати однією з головних галузей економіки, тому вдосконалення транспортних засобів потрібно вважати першочерговою задачею.
Конструкція автомобіля постійно вдосконалюється. До автомобіля пред’являються все більш жорсткі вимоги. Це підвищення економічності, динамічності, зменшення власної ваги, підвищення активної та пасивної безпеки, підвищення екологічності та комфортабельності.
Все більше і більше сучасних автомобілів обладнані електронною та мікропроцесорною технікою для керування.
Автомобіль – це джерело забруднення навколишнього середовища, тому все більше і більше відводиться уваги автомобілям на альтернативному виді палива. Це електроавтомобілі, автомобілі, які працюють на природному газі, на водні.
В останній час на автомобілях широко використовуються пластмаси та композитні матеріали. Це дозволяє значно зменшити масу автомобіля, підвищити економність та уникнути такого явища як корозія. Однак досягнення високих експлуатаційних - технічних властивостей автомобілів зв’язане з деяким загальним ускладненням їх конструкції, яка пред’являє більш високі вимоги до організації и рівня експлуатації.
Вантажні автомобілі ГАЗ по мірі розвитку їх випуску відіграють все більш важливу роль в народному господарстві нашої країни. Знання характеристик, будови і роботи основних агрегатів і систем, технології технічного обслуговування дозволить водіям, робітникам автомобільного транспорту більш повністю використовувати технічні можливості автомобілів в процесі його експлуатації







































1 Аналіз вихідних даних та розробка компонувальної схеми автомобіля

1.1 Вибір і обгрунтовування основних параметрів автомобіля.

Розраховуємий тип автомобілів (вантажні автомобілі загального призначення) – це автомобілі середньої вантажопідйомності (від 2 до 5 тон), які використовуються для міських та позаміських перевезень. Ці автомобілі призначені для перевезення будь-яких видів вантажів і мають кузов типу платформа, фургон, або спеціально обладнаний кузов. Найбільш поширені моделі даного класу це: ГАЗ-52, ГАЗ-53А, ГАЗ-66 та інші аналоги.
Автомобілі ГАЗ–52, ГАЗ–53А мають колісну формулу 4х2, проте використовується також модель з 4х4 - автомобіль ГАЗ-66. Це автомобіль підвищеної прохідності, який призначений для експлуатації в погіршених шляхових умовах та умовах бездоріжжя.
ГАЗ–53А – це вантажний автомобіль з кабіною, розташованною за двигуном і кузовом типу платформа або фургон. Задньоприводний, встановлюється двигун ЗМЗ-53 (карбюраторний, типу V-8, з робочим об’ємом 4,25 л і потужністю 84,6 кВт).
ГАЗ–52 – це вантажний автомобіль з кабіною, розташованною за двигуном і кузовом типу платформа або фургон. Задньоприводний, встановлюється двигун ЗМЗ-52 (карбюраторний, типу R-6, з робочим об’ємом 3,5 л і потужністю 62 кВт).
ГАЗ-66 – це вантажний автомобіль з кабіною, розташованною над двигуном і кузовом типу платформа або фургон. Задньоприводний, встановлюється двигун ЗМЗ-53 (карбюраторний, типу V-8, з робочим об’ємом 4,25 л і потужністю 84,6кВт).
Автомобіль – самоскид “ГАЗ – 53Б” випускається Саранським заводом автосамоскидів з 1966 р. на базі автомобіля “ГАЗ – 53А”, який випускався Горьківським автомобільним заводом з 1965року. Він має двох дверну суцільнометалеву кабіну з двома дверима та двома місцями для сидіння. Призначення даного автомобіля – перевезення вантажів . Кузов автомобіля - металева платформа зі знімними надставними бортами. Розвантаження на три сторонни. Технічні характеристики автомобіля ГАЗ – 53Б представлені в таблиці 1.1
У якості палива на автомобілі використовується бензин А-76 (ГОСТ 2084 - 67).
Паливний бак автомобіля розташований під кабіною автомобіля і займає горизонтальне положення .
На автомобілі ГАЗ – 53А використовуються камерні діагональні шини розміром 8,25 R 20 (240 R 508). Колеса є дискові з ободом 152Б – 508 (6,0 Б 20) з розрізними бортовими кільцями.
Тиск повітря в шинах
- передніх коліс, кПа (кгс/см2) 280 (2,8)
- задніх коліс, кПа, (кгс/см2) 430 (4,3)

Таблиця 1.1 - Технічні характеристики автомобіля ГАЗ – 53Б
Параметри
Одиниця
виміру Значення

Корисна вантажопідємність
Повна маса автомобіля
Маса в спорядженому стані
Габаритні розміри а – ля
- довжина
- ширина
- висота
Радіус повороту по колії зовн. переднього колеса
Максимальна швидкість
Витрата палива
Дорожній просвіт а-ля (під картером задн. мосту)
База а-ля
Колія передніх коліс ( на площині дороги )
Колія передніх коліс (між середин. подвійн скатів)
Кути звісу ( з навантаженням )
- задній
- передній
Максимальний кут підйому
Погрузочна висота платформи
кг
кг
кг

мм
мм
мм
м
км/год
л/100км
мм
мм
мм
мм

град.
град.
град.
мм
3500
7400
3750

6380
2475
2575
8
90
24
265
3700
1560
1690

32
41
50
1330


1.2 Визначення параметрів маси:

Маса автомобіля визначається за допомогою коефіцієнта використання маси q, який є відношенням власної маси автомобіля Мо до його вантажоємності Мгр і маси пасажирів Мп тобто в нашому випадку
n = 2 чоловіки
Мо = 3750 кг;
Мгр = 3500 кг
Мп = 75∙n = 75∙2 = 150 кг

Тоді ( 1.1)

Повна маса автомобіля:

Ма = М0 + Мгр + Мn = 3750 + 3500 + 150 = 7400кг ( 1.2 )

1.3 Визначення кількості осей автомобіля:

, (1.3)

де Gа = Ма ∙ g - сила ваги автомобіля;
g - прискорення сили ваги;
Gд - допустиме вагове навантаження на некеровану вісь;
φрозр- коефіцієнт зміни нормальної реакції дороги на ведучі колеса автомобіля при русі в тяговому режимі;
ψmax - коефіцієнт сумарного опору дороги (максимальне значення для заданих дорожніх умов).

=1 / ( 1 - 0,3 φ розр), (1.4)

ψрозр - коефіцієнт зчеплення ведучих коліс з полотном дороги в несприятливих умовах (ψрозр = 0,15...0,4).

=1/(1-0,3∙0,15)=1.

nb min≥(7400∙9,8∙0,22)/(1∙5445∙9,8∙0,15)=1,8.

Отже приймаємо кількість осей автомобіля n=2.

1.4 3абезпечення активної, пасивної та екологічної безпеки

Заходи, які покращують активну безпеку автомобіля :
-використання більших дзеркал заднього виду, які збільшують оглядовість водія;
-використання сигнальних вогнів більших за розмірами та потужністю, увідповідності до норм сучасної безпеки ;
- використання додаткових фар, протитуманних;
-використання більш зручніших сидінь, які зменшують втомлювальність;
-обладнання місця водія системою кондиціювання повітря;
-заміна покришок на більш високоякісні з кращими показниками гальмівного шляху, керованості та курсової стійкості.
Заходи по покращенню пасивної безпеки :
- зменшення кількості відкритих металевих поверхонь салону автомобіля , шляхом заміни їх пластиковими чи з захистом гумою з метою зменшення ймовірності травматизму при ДТП;
- обладнання автомобіля ефективнішими гальмовими системам;
- обладнання автомобіля додатковим вогнегасником.
В даний час із збільшенням автомобілів, загострується проблема забруднення навколишньго середовища. Найбільше забруднення несуть відпрацьовані гази. Токсичність відпрацьованих газів можна зменшити за рахунок економії палива, правильного регулювання карбюратора, паливної апаратури, застосування неетильованих бензинів. Зниження викидів СО можна досягнути шляхом підтримки двигуна в чистому стані. Викид концерогенних речовин можна значно зменшити, якщо встановити каталітичний нейтралізатор, який зменшує рівень СО на 80 % , СН на 70%, N0 на 50% . Загалом токсичність зменшується у 10 разів.
Також велике забруднення несуть і АТП. Викиди в гідросферу води( після мийки), нігролу, мастила, та інші. Для зменшення викидів води, її потрібно фільтрувати і повторно використовувати.

1.5 Підвищення надійності

Для підвищення надійності деталей необхідно правильно підібрати матеріали поверхонь тертя. Вибір матеріалу проводиться з врахуванням мастильних матеріалів, які використовуються.
Раціональний вибір матеріалу інколи дозволяє в декілька разів підвищити зносостійкість деталей . Так, наприклад, знос шийок колінчастих валів, виготовлених з магнієвого чавуна, для двигуна зменшився майже у двічі у порівнянні з іншими валами.
Підвищення довговічності поверхонь деталей тертя досягається також за рахунок конструктивних змін, підвищення якості виготовлення і рядом технологічних заходів: пластичним деформуванням, термічною, хіміко-термічною та хімічною обробкою робочих поверхонь деталей , металізацією та ін.
Зносостійкість поверхонь деталей тертя в значній мірі залежить від твердості поверхневого шару . Однак в процесі зношування вихідна твердість може зменшитись до деякої оптимальної величини , яка зберігається до кінця процесу зношення. Для підвищення твердості поверхневого шару сталевих деталей застосовують наступні методи : цианідування , азотування ,поверхневе гартування .
Крім термообробки робочих поверхонь вузлів застосовуюється хімічна обробка робочих поверхонь, для підвищення зносостійкості оксидування, сульфатування, фосфатування.
Одним з більш розповсюджених методів підвищення зносостійкості сталевих деталей є електролітичне хромування.
Крім термічної і хімічної обробки підвищення зносостійкості робочих поверхонь досягається методом зміцнюючої технології.
Наклепування поверхонь деталей є не лише засобом підвищення зносостійкості, але як операція оздоблення поверхні. Зносостійкость при цьому збільшується внаслідок підвищення твердості поверхневого шару деталей, виникнення залишкових напружень, стиску в ньому і утворення поверхні високої чистоти . Водночас можна досягти покращення геометричної поверхні.
Експлуатаційні дані показують, що збільшення зносостійкості вузлів шляхом даного методу поки що незначна але доцільна. Ряд лабораторних випробувань показують, що наклепування поверхонь прискорює процес приробки пар тертя, зменшує схильність до схоплення у порівнянні з токарними операціями чи шліфуванням. Зміцнення поверхні може значно підвищити термін служби пар тертя при малих швидкостях ковзання та при періодичній роботі. Підвищення довговічності нових двигунів досягнуто за рахунок збільшення структурної пружності і короткохідності, підвищення якості прокладок, застосуванням втулок клапанів з металокераміки і т.п.

1.6 Обгрунтування та розробка компонувальної схеми автомобіля

Для визначення особливостей експлуатації та галузі застосування автомобіля, який розробляється, слід ураховувати сучасні вимоги стосовно рухомого складу автомобільного транспорту та тенденції його розвитку.
Особливу увагу потрібно звернути на можливі шляхи підвищення транспортної продуктивності, його економічності, надійності конструкції, на зниження трудомісткості обслуговування та ремонту й поліпшення умов праці водія.
Таким чином, у курсовому проекті мають бути відображені такі положення: встановлення вимог до автомобіля, що розробляється;
аналіз і критична оцінка умов роботи автомобіля.
Згідно ГОСТ 21398-75 нижня границя максимальної швидкості складає 75 км/год для повністю навантажених одиничних автомобілів, автобусів та автопоїздів, які рухаються по горизонтальній дорозі з твердим покриттям, і 30 км/год - на підйомі з ухилом 3%.
Максимальна швидкість більшості сучасних вантажних автомобілів знаходиться в межах 80...100 км/год. Передбачається, що в перспективі швидкість вантажних автомобілів магістрального типу буде перевищувати 100км/год.

Вибір і обґрунтування конструкційних даних.
Максимальна швидкість Vamax приймається із завдання:
Vamax1 = 90 км/год

( 1.5 )

В цих розрахунках Vamax - в м/с
Принципова схема компоновки складається на окремому листі формату не менше 210*297 мм, при цьому обраховується габаритні розміри. Ця схема компоновки входить до пояснювальної записки. На ній позначають колію, базу і координати центру мас. Принципова схема компоновки наведена на рис. 1.1.


Рисунок 1.1 - Принципова схема компоновки

Вага автомобіля

Ga = g∙Ma = 9.81∙7400 = 72594 H ( 1.6 )

де g = 9.81м/с2 - прискорення вільного падіння

Розподіл загальної маси автомобіля Мо по осях визнається координатами центра мас автомобіля, які були взяті при розробці компоновочної схеми.
База автомобіля
L = 3,7м
Відстань від центру мас до передньої осі

а = 0,75∙L = 0,75∙3,7 = 2.775м ( 1.7 )

Відстань від центру мас до задньої осі

b = 0,25∙L = 0,25 ∙ 3,7 = 0,925м ( 1.8 )

Координати центру мас по висоті hg для вантажних автомобілів у навантаженому стані

hg = 0.33 ∙ L = 0,33 ∙ 3,7 = 1,221м ( 1.9 )

За координатами центру мас визначають навантаження на передню і задню осі автомобіля:

( 1.10 )
( 1.11 )






















2 Тяговий розрахунок і визначення тягово-швидкісних властивостей автомобіля

2.1. Динамічний радіус колеса:

За навантаженням на осі визначають навантаження на окремі колеса одної осі:
S1 = 2 - кількість коліс на передній осі,
S2 = 4 - кількість коліс на задній осі

( 2.1 )
( 2.2 )

Динамічний радіус rq визначають визначають за типом і розміром шин.
Підбираючи шини, керуються отриманими величинами навантажень на колеса кожної осі автомобіля ГОСТ 5513-86, в яких вказуються максимальні допустимі навантаження на шини вантажних автомобілів.
Приймаємо радіальні камерні шини розміром 240/508 .
де d = 508 мм. — внутрішній діаметр шини ;
b = 240 мм. - висота профілю шини ;
λ= 0,1 - коефіцієнт деформації шини, може лежати в межах (0,09... 0,14);

508 / 2 + 240 ( 1 - 0,1 ) = 470мм. = 0,47м ( 2.3)

2.2 Розрахунок ККД трансмісії:

ККД трансмісії автомобіля визначається як добуток ККД окремих механізмів

=ηкп ∙ηгп ∙ηкш, (2.4)

де ηкп – ККД коробки передач;
ηгп – ККД головної передачі;
ηкш - ККд карданного шарніра.

=0,95∙0,95∙0,995=0,92.



2.3 Розрахунок фактору опору повітря:

Фактор опору повітря W визначається як добуток коефіцієнту обтікання k на площу фронтальної проекції автомобіля F:
Для вантажних автомобілів k лежить в межах ( 0,6...0,7 );
Приймаємо k = 0,65
Для вантажних автомобілів:В - колія = 1,56м, Н - висота = 2,575 м

Отже W = 0,65 ∙ 1.56 ∙ 2,575 = 2,61 м2 ( 2.5 )

2.4 Визначення максимальної потужності двигуна і побудова його швидкісної характеристики:

Основне завдання тягового розрахунку - визначення максимальної потужності двигуна й передаточних відношень трансмісії автомобіля, які забезпечать йому потрібні показники тягово - швидкісних, якостей, що задаються.

2.4.1 Розрахунок потужності двигуна

Задаємо дорожній опір ψV при максимальній швидкості :
В розрахунках приймають для вантажних автомобілів ψV = ( 0.015..0.025 )
Для даного проекту ψV = 0,024
При повній масі автомобіля розрахункова потужність двигуна:

( 2.6 )

де Ga – вага автомобіля;
Vamax = 25м / c. – максимальна швидкість автомобіля;
W= 2,61м2 – площа обтікання;
ήтр = 0,94 – ККД трансмісії
В подальших розрахунках будемо використовувати дані значення
Якщо одержане таким чином розрахункове значення потужності відрізняється не більше ніж на 5% від потужності існуючого двигуна, то для автомобіля, що розробляється, вибираємо двигун вітчизняного виробництва і наводимо його зовнішню характеристику.
Приймаємо двигун ЗМЗ – 53, карбюраторний чотиритактний, восьмициліндровий, рідинного охолодження, з такими параметрами:
Nmax = 88,5 kВт – максимальна потужність
nN = 3200 об/хв. – максимальна кількість обертів
Ммах = 286,05 Н м – максимальний крутний момент при nM = 2000 об/хв




Визначимо різницю потужності в прийнятому і проектованому двигунах:

(Nр - Nmax ) / Nр ∙ 100 % =( 88,5 - 86,67 ) / 88,5 ∙ 100 % = 2,1% ( 2.7 )

Зовнішня характеристика приведена на (лист. 1)

2.4.2 Визначення передаточних чисел трансмісії

Передаточне число головної передачі вибирають визначаючи, насамперед, мінімальне передаточне число трансмісії Umin .
Для цього нам знадобиться rk - радіус кочення ведучого колеса, взятий з належною точністю таким, що дорівнює динамічному радіусу - rk = rq = 0.47
Тоді:

( 2.8 )

Тепер визначаємо передаточне число головної передачі U0 , виходячи з того, що Umin=Uk min Uд min U0 ,
Якщо додаткова коробка відсутня, то її передаточне число дорівнює одиниці, тобто Uд min = 1
Мінімальне передаточне число коробки передач, як правило, вибирають рівним одиниці (пряма передача). Беручи до уваги, що при зменшенні мінімального передаточного числа покращуюються розгінні якості автомобіля вибираємо Uk min = 0.92
Тоді:

( 2.9 )

Максимальне передаточне число трансмісії Umax визначається при умові максимального опору дороги. Останній характеризується величиною дорожнього опору ψмах який для вантажних автомобілів рівний (0,35...0,45)
Приймаємо ψмах =0,4

( 2.10 )

Перевірка за умовами зчеплення
При коефіцієнті зчеплення φ = 0.7 і коефіцієнті перерозподілу навантаження m1 = 1,2

Gbk = m1∙G1 = 1.2 ∙ 18148,5 = 21778,2 Н

( 2.11 )

Вибираємо максимальне передаточне число Umax , тому що виконується умова руху без буксування.
Передаточне число першої передачі

( 2.12 )

Перед тим, як вибрати проміжні передаточні числа, виберемо кількість передач n = 5





Приймаємо

2.5 Побудова зовнішньої характеристики двигуна

Оскільки вибраний двигун "без обмежувача", то ми знаходимо значення Ne і Mk по відповідним формулам, попередньо знайшовши кутову швидкість.

( 2.13 )

Для прикладу розрахуємо потужність і крутний момент для ne = 500 об/хв.

(2.14)
( 2.15 )

Розраховані значення зводимо в таблицю 2.1

Таблиця 2.1 - Залежність потужності Ne (кВт) і крутного моменту Мк (Н м) на колінчастому валу двигуна від його частоти обертання ne(об/хв)
ne Ne Me
500 15,65 299,06
700 22,67 309,4
900 29,92 317,62
1100 37,28 323,81
1300 44,63 327,99
1500 51,8 329,94
1700 58,72 330,02
1900 65,22 327,95
2100 71,18 323,84
2300 76,47 317,66
2500 80,96 309,39
2700 84,52 299,08
2900 87,02 286,69
3100 88,33 272,29
3300 88,32 255,7
3500 86,87 237,14

Залежність потужності Ne (кВт) і крутного моменту Мк (Н м) на колінчастому валу двигуна від його частоти обертання ne(об/хв) приведена на (лист. 1)

Розрахунок і побудова діаграми балансу потужностей

Діаграма балансу потужностей - це залежність Na(Va), побудована для усіх передач в залежності Ny(Va) для вибраних значень y.
N1 = Ne
N2= Ne
N3= Ne
N4 = Ne
N5= Ne






де Va - швидкість автомобіля на кожній передачі (м/с)
Діаграма балансу потужностей приведена на (лист. 1)

2.6 Динамічний паспорт автомобіля

Визначення показників тягово-швидкісних властивостей автомобіля.
Завдяки проведеним попереднім розрахункам отримані всі необхідні значення для побудови динамічної характеристики, графіків прискорень, часу і шляху розгону автомобіля.
Необхідні для побудови графіка розрахунки виконують, використовуючи графік Ме=f(ne) зовнішньої швидкісної характеристики двигуна з використанням залежностей. Залежність швидкості автомобіля Va (м/с) від частоти обертання колінчастого валу ne(об/хв) наведена в таблиці 2.2

Таблиця 2.2 - Залежність швидкості автомобіля Va (м/с) від частоти обертання колінчастого валу ne(об/хв)
ne Va1 Va2 Va3 Va4 Va5
1 2 3 4 5 6
500 0,556 0,887 1,412 2,265 3,914
700 0,778 1,242 1,977 3,171 5,480
900 1,000 1,597 2,542 4,077 7,046
1100 1,223 1,951 3,107 4,983 8,611
1300 1,445 2,306 3,672 5,889 10,178
1500 1,667 2,661 4,237 6,795 11,743
1700 1,889 3,016 4,802 7,701 13,309
1900 2,112 3,371 5,367 8,607 14,875
Продовження таблиці 2.2
1 2 3 4 5 6
2100 2,334 3,725 5,932 9,513 16,441
2300 2,556 4,080 6,496 10,419 18,006
2500 2,778 4,435 7,061 11,325 19,572
2700 3,001 4,789 7,626 12,231 21,138
2900 3,223 5,145 8,191 13,137 22,703
3100 3,446 5,499 8,756 14,043 24,269
3300 3,668 5,854 9,321 14,949 25,835
3500 3,890 6,209 9,886 15,855 27,401

2.6.1 Сила тяги автомобіля на кожній передачі Рр (Н).

Приклад для одного значення







Розраховані значення зводимо в таблицю 2.3

Таблиця 2.3 - Залежність сили тяги автомобіля Рр (Н) від частоти обертання колінчастого валу ne(об/хв)
ne Pp1, кН Pp2, кН Pp3, кН Pp4, кН Pp5, кН
1 2 3 4 5 6
500 26,471 16,586 10,417 6,495 3,758
700 27,387 17,159 10,777 6,720 3,888
900 28,114 17,615 11,064 6,899 3,992
1100 28,662 17,958 11,279 7,033 4,069
1300 29,032 18,190 11,425 7,124 4,122
1500 29,205 18,298 11,493 7,166 4,146

Продовження таблиці 2.3
1 2 3 4 5 6
1700 29,212 18,303 11,496 7,168 4,147
1900 29,029 18,188 11,423 7,123 4,121
2100 28,665 17,960 11,280 7,034 4,069
2300 28,118 17,617 11,065 6,899 3,992
2500 27,386 17,159 10,777 6,720 3,888
2700 26,473 16,587 10,418 6,496 3,759
2900 25,376 15,899 9,986 6,227 3,603
3100 24,102 15,101 9,485 5,914 3,422
3300 22,634 14,181 8,907 5,554 3,213
3500 20,99 13,152 8,260 5,151 2,980

2.6.2 Сила опору повітря Рw (Н)

Pw = W∙Va52 = 2,61 ∙3.92 = 39,987 Н ( 2.16 )

Динамічний фактор D від частоти обертання колінчастого валу ne(об/хв)
Приклад для одного значення







Розраховані значення зводимо в таблицю 2.4






Таблиця 2.4 - Залежність динамічного фактору автомобіля D від частоти обертання колінчастого валу ne(об/хв)
Pw, Н D1 D2 D3 D4 D5
39,987 0,364 0,228 0,143 0,089 0,051
78,392 0,376 0,235 0,147 0,091 0,052
129,575 0,386 0,241 0,151 0,093 0,053
193,551 0,392 0,245 0,153 0,094 0,053
270,361 0,396 0,247 0,154 0,094 0,053
359,930 0,397 0,247 0,153 0,093 0,052
462,293 0,396 0,246 0,152 0,092 0,051
577,508 0,392 0,243 0,149 0,090 0,049
705,464 0,385 0,238 0,146 0,087 0,046
846,213 0,376 0,231 0,141 0,083 0,043
999,832 0,363 0,223 0,135 0,079 0,039
1166,174 0,349 0,212 0,127 0,073 0,036
1345,31 0,331 0,200 0,119 0,067 0,031
1537,334 0,311 0,187 0,109 0,060 0,026
1742,063 0,288 0,171 0,099 0,053 0,020
1959,585 0,262 0,154 0,087 0,044 0,014

Динамічна характеристика приведена на (лист. 1)

2.7 Побудова графіка прискорень

Приклад для одного значення

δ1 = 1.03 + 0.05∙Uk12 = 1.03 + 0.05∙6,482 = 3,129
δ2 = 1.03 + 0.05∙Uk22 = 1.03 + 0.05∙4,062 = 1,854
δ3 = 1.03 + 0.05∙Uk32 = 1.03 + 0.05∙2,552 = 1,355
δ4 = 1.03 + 0.05∙Uk42 = 1.03 + 0.05∙1,592 = 1,156
δ5 = 1.03 + 0.05∙Uk52 = 1.03 + 0.05∙0,922 = 1,072
(м/с2)
(м/с2)
(м/с2)
(м/с2)
(м/с2)
Розраховані значення зводимо в таблицю 2.5

Таблиця 2.5 - Залежність прискорення автомобіля Ja (м/с2 ) від частоти обертання колінчастого валу ne(об/хв)
Ja1 Ja2 Ja3 Ja4 Ja5
1,066 1,079 0,861 0,551 0,249
1,104 1,118 0,893 0,573 0,261
1,133 1,148 0,917 0,588 0,267
1,154 1,168 0,932 0,596 0,269
1,167 1,179 0,939 0,597 0,266
1,171 1,181 0,937 0,592 0,258
1,166 1,173 0,927 0,580 0,245
1,154 1,157 0,908 0,561 0,227
1,132 1,131 0,881 0,536 0,204
1,103 1,095 0,845 0,504 0,177
1,064 1,051 0,801 0,465 0,144
1,018 0,997 0,749 0,419 0,107
0,963 0,934 0,688 0,367 0,065
0,899 0,862 0,619 0,308 0,018
0,827 0,779 0,541 0,242 -0,034
0,747 0,689 0,455 0,169 -0,091

Графік прискорень приведений на (лист. 1)

2.8 Графік часу і шляху розгону

Час розгону автомобіля визначають для кожного інтервалу швидкостей:
Графіки часу t=f (Va) і шляху розгону S=f (Va) автомобіля будують, використовуючи графік прискорень автомобіля графо – аналітичним методом табл.2.6.
Приклад для одного значення









Таблиця 2.6 - Графіки часу t=f (Va) і шляху розгону S=f (Va) автомобіля
Інтервали швидкостей Швидкість в кінці інтервалу Vaі, м/с Прискорення в кінці інтервалу Jaі, м/с2 Час розгону в інтервалі tі, с Сумарний час розгону ∑ tі, с Шлях розгону в інтервалі Sі, м Сумарний шлях розгону ∑ Sі, м
1 0,556 1,066 1,043 2,024 0,28 1,363
2 0,778 1,104 0,205 0,137
3 1,223 1,154 0,394 0,394
4 1,667 1,171 0,382 0,552
5 1,597 1,148 2,782 5,563 2,221 5,248
6 1,951 1,168 0,153 0,271
7 2,306 1,179 0,303 0,645
8 2,661 1,181 0,301 0,748
9 2,542 0,917 5,544 12,619 7,046 17,199
10 3,107 0,932 0,611 1,726
11 3,672 0,939 0,604 2,047
12 3,951 0,940 0,297 1,132
13 4,077 0,588 13,867 29,039 28,268 58,487
14 4,663 0,593 0,496 2,168
15 4,983 0,596 0,538 2,595
16 5,889 0,597 1,519 8,257
17 6,0 0,278 43,165 187,704 129,495 2221,604
18 13,309 0,245 27,950 269,843
19 19,572 0,144 32,2 529,38
20 25 0,05 55,389 1234,399
Сумарний час і сумарний шлях розгону автомобіля до швидкості і-го інтервалу Vaі визначають за допомогою сумування часу і шляху розгону на всіх інтервалах швидкостей виходячи з того, що :
Приклад для одного значення

S = S1 + S2 + S3 + S4 + = 0.28 + 0.137 + 0.394 +0.552= 1.363
T = t1 + t2+ t3+ t4 = 1.043 + 0.205 + 0.394 + 0.382 = 2.024

2.9 Паливно-економічна характеристика

При курсовому проектуванні двигуна зовнішню швидкісну характеристику двигуна, який проектується, будують по емпіричним формулам, які забезпечують достатню ступінь точності.
Показником паливної економічності є загальні витрати пального, віднесені до пройденого шляху або до величини транспортної роботи. Залежність витрат пального від швидкості руху автомобіля при сталому русі називають паливно-економічною характеристикою.
Витрати палива gs визначають за слідуючою формулою, л / 100:

qs = qN ∙ Kоб ∙KМ ∙ ( Pψ + Pn ) / (3.6 ∙ 104 ∙ ήтр ∙ ρ) (2.17)

де gN – ефективні витрати пального двигуном при максимальній потужності, (г / кВт ∙ г), для карбюраторних двигунів = 340 г /кВт год ;
Kоб – коефіцієнт, що враховує зміну питомих витрат пального двигуном
ήтр – ККД трансмісії автомобіля;
ρ – густина пального, г / см3;
Pψ – сила опору дороги, Н;
Pn - сила опору повітря, Н.


2.10 Експлуатаційні властивості спроектованого автомобіля

2.10. 1 Гальмові властивості автомобіля

Для оцінки гальмових властивостей автомобіля використовуються показники:
- шлях гальмування Sг, м

, (2.18)

де va - швидкiсть автомобiля, з якої починається гальмування (встановлюється згiдно вимог до випробувань гальмових систем);
 - кут нахилу полотна дороги;
f - коефiцiєнт опору коченя колiс;
 - коефiцiєнт зчеплення колiс з полотном дороги;
g = 9,81 м/с2 - прискорення сили ваги.

(м)

- уповiльнення jc , м/с2

(2.19)

(м/с2)

Значення , , відповідають показникам рівної ділянки дороги з сухим цементобетонним або асфальтним покриттям.
Отримані значення Sг i jc порівнюють з вимогами “Правил дорожнього руху України” i роблять висновок про ефективність гальмової системи i вiдповiднiсть діючим вимогам.

2.10.2 Стійкість автомобіля

Поперечна стійкість автомобіля оцінюється за величиною критичної швидкості автомобіля під час руху по криволiнiйнiй траєкторії згідно з умовами бічного перекидання vпер i заносу vз:

(2.20)

(2.21)

де R - радiус кривизни полотна дороги в планi, м;
В - ширина колiї автомобiля, м;
- висота центра мас автомобiля, м;
 - коефiцiєнт зчеплення (асфальт, асфальтобетон).

Розрахунки значень vпер i vз проводяться для значень R (20, 40, 60, 80, 100м). Резкльтати розрахунків представлено в (табл. 2.7) Пiсля отримання значень vпер і будуємо графiк залежностi vпер = f(R) i vз = f(R) (рис. 2.1).


Таблиця 2.7 - Стійкість автомобіля
Параметри Радіус повороту
20 40 60 80 100
Швидкість перекидання 8,3 13,2 15,2 17,6 20,2
Швидкість заносу 7,9 11,5 14,3 15,7 17,8

















Рисунок 2.1 – Показники стійкості автомобіля

2.10.3 Керованiсть автомобіля

Керованiсть автомобiля визначається мірою вiдповiдностi траєкторiї його руху положенню керованих колiс. Її оцiнюють критичними швидкостями руху по боковому ковзанню vкер i по відведенню vз колiс, а також радiусом повороту автомобiля Rе.
Критична швидкiсть з умов керованостi дорiвнює:

(2.22)

де  - коефiцiєнт зчеплення шин з дорогою (розрахункове значення 0,4);
f - коефiцiєнт опору коченню коліс ( =0,02);
L - повздовжня база автомобіля, м;
 - середній кут повороту керованих коліс автомобіля, м.
Графiк залежностi vкері = f( ) (рис. 2.2) будується після обчислення Vкер і при значеннях = 5, 10, 15, 20, 25, 30, 35, 40°.
Пiд час руху автомобіля зi швидкістю більшою, ніж vкер , керованi колеса будуть ковзати в поперечному напрямi i поворот їх на ще більший кут не приведе до зміни загального напрямку руху. Результати розрахунків заносимо в табл. 2.8

















Рисунок 2.2 – Залежність швидкості автомобіля від кута повороту

Радіус повороту автомобіля дорівнює:

(2.23)

де кути бокового відведення відповідно передніх i задніх коліс, град;
- бокові сили, якi діють на колеса відповідно передньої i задньої осей автомобіля, H;
- коефіцієнти опору відведення одного одинарного колеса відповідно передньої i задньої осі, H/град (для колеса легкового автомобіля значення дорівнює 500...1000 H/град, вантажного автомобіля - 800...1500 H/град).





















Рисунок 2.3 – Залежність радіуса повороту від кута повороту
керованих коліс

Граничні значення бокових сил, при яких колеса котяться без бокового ковзання

(2.24)

де Gi – навантаження на вісь.

(град);

(град).

Після визначення кутів бокового відведення коліс i обчислюємо радіус повороту автомобіля, що проектується, з еластичними колесами (Rе), з радіусом повороту автомобіля з жорсткими (в бічному напрямі) колесами (R), який дорівнює:
Rж=L/tg (2.25)

Результати розрахунків заносимо в табл. 2.8

Таблиця 2.8 - Керованiсть автомобіля
Параметри Кут повороту
5 10 15 20 25 30 35 40
Критична
швидкість 11,8 10,4 8,3 7,8 6,7 5,9 5,2 4,6
Радіус повороту
24,22 14,38 10,1 7,73 6,17 5,09 4,27 3,6
Радіус повороту
35,4 17,6 11,56 8,52 6,65 5,37 4,43 3,69

Аналізуючи табл. 2.8 можна зробити висновок, що спроектований автомобіль має недостатню повороткість так як Rе < R.

2.4. Плавність ходу автомобіля

Плавність ходу автомобіля при його коливаннях оцінюється:
- частотою вільних коливань пiдресорених мас;
- частотою вільних коливань непiдресорених мас;
- прискоренням пiдресорених мас;
- швидкістю зміни прискорення пiдресорених мас.
Частота вільних коливань пiдресорених мас автомобіля може бути визначена з виразу:

п = , <с-1] (2.26)

де fст - статичний прогин підвіски, м.
Для вантажних автомобілів і міських автобусів приймають fст = 0,08...0,13 м, при цьому більші значення приймають для передньої підвіски, менші - для підвіски задніх коліс вантажних автомобілів.
У сучасних легкових автомобiлiв для передньої пiдвiски ст =0,15...0,25 м, для задньої пiдвiски ст =0,12...0,18 м. Для міжміських автобусів ст = 0,12…0,18 м.
Плавність ходу можна вважати задовільною, якщо:
п = 0,8...1,3 Гц - для легкового автомобіля;
п = 1,2...1,8 Гц - для вантажного автомобіля.

(Гц).

Частота вільних коливань непiдресорених мас автомобіля дорівнює:

(2.27)

де Cш - сумарна радіальна жорсткість шин моста, H/м;
mм - маса моста, кг.
Жорсткість однієї шини визначити за залежністю:

(2.28)

де Gш max - максимальне припустиме навантаження на шину, H;
Дв - зовнішній діаметр шини при максимальному тиску без навантаження, м;
гс - статичний радіус шини при максимальному тиску i навантаженні, м.

(H/м);

(Гц).

Для задовільнення вимог плавності ходу автомобіля частота вільних коливань його непiдресорених мас повинна бути:
н = 8...12 Гц - для легкових автомобілів;
н = 6,5...9 Гц - для вантажних автомобілів.
Під час руху автомобіля по дорозі, яка має нерівності, він здійснює вимушені коливання, частота i амплітуда яких залежить від швидкості руху автомобіля, висоти i довжини хвиль нерівностей на дорозі.
Частота вимушених коливань в цьому випадку дорівнює:

(2.29)

де Va – максимальна швидкість руху автомобіля, м/с;
S - довжина хвилі нерівності на дорозі, м (Sм=0,5...5м).

Результати розрахунків заносимо в таблицю 2.3


Таблиця 2.3 - Плавність ходу автомобіля
Параметри Довжина хвилі нерівності
0,5 1 1,5 2 2,5 3 3,5 4 4,5 5
Частота вимушених коливань 50 25 16,7 12,5 10 8,33 7,14 6,25 5,56 5

Під час руху автомобіля можуть виникнути резонансні явища:
- низькочастотні - п = в ;
- високочастотні - н = в .
В підвісці проектованого автомобіля на всьому діапазоні швидкості резонансні явища не виникають.


















Рисунок 2.4 – Залежність довжини хвилі нерівності від частоти вимушених
коливань


2.8 Висновки

Отже, після тягового розрахунку автомобіля і аналізу тягово-швидкісних властивостей та паливної економічності можна стверджувати, що даний прототип автомобіля має кращі показники динамічності, економічності та є більш безпечним в дорожніх умовах.



3 Конструювання і розрахунок зчеплень

3.1 Призначення, вимоги та класифікація існуючих елементів розроблювальної конструкції

Зчеплення призначене для:
- відключення двигуна від трансмісії при переключенні передач, різкому гальмуванні;
- плавного з’єднання двигуна із трансмісією при рушанні з місця;
- захисту двигуна і трансмісії від перевантаження;
- передачі крутного моменту від двигуна на коробку передач.

Вимоги до зчеплення :
- передача крутного моменту від двигуна до трансмісії;
- плавність і повнота включення;
- чистота включення;
- мінімальний момент інерції ведучих елементів;
- відведення теплоти від поверхонь тертя;
- запобігання руйнувань трансмісії від динамічних навантажень;
- підтримання натискного зусилля в заданих межах;
- мінімальні затрати фізичних зусиль на керування;
- врівноваженість.

Зчеплення класифікують:
- по характеру роботи: постійно – замкнуті і постійно – розімкнуті;
- по характеру зв’язку між веденими елементами: гідравлічне, електромеханічне, фрикційне;
- по типу привода: з механічним, з гідравлічним, з комбінованим приводом ( пневматичним, пневмо – гідравлічним, електромеханічним, електровакуумним );
- по способу керування: пневматичне ( ручне або ножне, з підсилювачем і без підсилювача), автоматичне;
- по формі елементів тертя: спеціальне конусне, дискове ( одно, дво, та багатодискове – з сухими дисками або з дисками у масляній ванні).

Принцип дії зчеплення оснований на використанні сил тертя, які виникають між дисками. Ведучі диски зчеплення сприймають від маховика крутний момент двигуна, а ведені диски передають цей момент двигуна первинному валу коробки передач. Натискна конструкція (12 натискних пружин) забезпечують щільне притиснення ведучих і ведених деталей зчеплення для створення необхідного моменту тертя. Крутний момент від ведучих деталей передається на ведені за рахунок сил тертя.

3.2 Обгрунтування вибраного варіанту

Застосовувані на сучасних автомобілях фрикційні зчеплення мають високу надійність; простоту й технологічність конструкції; довговічність, погоджену з терміном служби інших механізмів трансмісії; малу трудомісткість технічного обслуговування при експлуатації; легкість керування, що не вимагає значної витрати фізичної сили; плавність зміни переданого моменту при включенні; сталість теплового режиму при роботі (забезпечують відвід тепла від його деталей); мінімальний моментом інерції ведених деталей зчеплення і пов'язаних з ним деталей трансмісії; гарну врівноваженість; сталість натискного зусилля незалежно від ступеня зношування тертьових поверхонь. Крім того, фрикційні зчеплення повинні забезпечувати зменшення вібрацій і резонансних коливань, переданих від двигуна, а також зберігати коефіцієнт тертя при зміні температури.
Стандартний тип зчеплення - сухе, однодискове, із пружним веденим диском, оснащеним гасителем крутильних коливань, і з діафрагменої натискною пружиною. Привід включення від педалі до вилки виконаний гідравлічним.
Власне зчеплення складається із двох основних частин: натискного диска в зборі з кожухом і веденим диском, поміщених у відлитий з алюмінієвого сплаву картер.
Натискний диск з'єднаний з кожухом трьома сталевими пластинами. Вони розташовані тангенціально й прикріплені однією стороною до кожуха, а другою - до натискного диска таким чином, щоб при передачі крутного моменту від маховика до диска пружини працювали на розтяг.
Завдяки пружним властивостям пластин, натискний диск може переміщатися в поздовжньому напрямку, тобто до маховика (при включенні зчеплення) або від маховика (при вимиканні зчеплення).
Ведений диск при монтажі зчеплення своєю маточиною надівається на шліци первинного вала. Його робоча поверхня з наклепаними на неї по обидва боки фрикційними накладками міститься між маховиком і натискним диском, а маточина має можливість переміщатися по шліцах первинного вала коробки передач. При натисканні на педаль, коли пружина, опираючись на обернене до маховика опорне кільце, вигинається у зворотну сторону, її зовнішній край відходить від маховика, припиняючи тиск на натискний диск. За допомогою трьох фіксаторів пружина, з'єднана з натискним диском, відводить його від веденого диска .
Завдяки своїй формі й установці між опорними кільцями діафрагмена пружина при відсутності зовнішнього впливу навантажує натискний диск, стискаючи ведений між ним і маховиком. При цьому крутний момент від маховика й постійно пов'язаного з ним через кожух зчеплення й сполучені пластини натискного диска передається через ведений диск на первинний вал і далі через шестерні коробки передач. карданну передачу й задній міст підводиться до ведучих коліс.
Вимикання зчеплення здійснюється переміщенням центральної частини діафрагменої пружини убік маховика; зовнішня частина пружини при цьому віддаляється від нього й, захоплюючи за собою натискний диск, звільняє ведений від передачі крутного моменту, роз'єднуючи трансмісію.
Для усунення передачі крутильних коливань колінчатого вала на коробку передач і для зменшення пікових напруг в елементах силової передачі, виникаючих при різкій зміні швидкісного режиму, ведений диск з'єднаний з маточиною за допомогою гасителя коливань (демпфера). Цей вузол складається із пружної муфти із шістьома пружинами й фрикційним елементом.
Останній складається із двох фрикційних кілець, між поверхнями яких затиснутий фланець маточини й кільцевої пружини стискаючого кільця для забезпечення необхідного моменту тертя.
Крутний момент двигуна передається від фрикційних накладок і через заклепки веденому диску й далі до маточини веденого диска через демпферні пружини. При зміні переданого крутного моменту відбуваються кутові переміщення веденого диска щодо його маточини; напрямки цих переміщень взаємно протилежні, тому демпферні пружини, через які передається обертання, стискуючись і розтискаючись, поглинають частину енергії крутильних коливань.
Фрикційний елемент, що є сухою дисковою муфтою, має певний момент тертя, у результаті якого виключаються резонансні коливання й частина поглинаючої енергію крутильних коливань перетворюється в теплову, яка розсіюється в навколишньому середовищі.

3.3 Вибір типу і конструктивної схеми зчеплення.

При виборі і обґрунтуванні конструкцій зчеплення для проектованого автомобіля варто звернути особливу увагу на забезпечення таких вимог, як плавність включення, повне вимикання "чистота", довговічність роботи, зручність і легкість керування. Для цього потрібно виходити з критичної оцінки існуючих конструкцій вітчизняних і закордонних зчеплень і враховувати умови роботи зчеплення.
Для автомобілів, умови роботи яких вимагають частого користування зчепленням (міські умови, робота в кар'єрах, короткі відстані й ін.), можуть бути застосовані гідравлічні або електродинамічні типи зчеплень.
Визначення розмірів поверхонь тертя припускає розрахунок зовнішнього і внутрішнього діаметрів фрикційних накладок веденого диска зчеплення.
Максимальний статичний момент, переданий зчепленням за рахунок сил тертя і який попереджує проковзування його робочих частин, визначається по залежності

( 3.1 )
Для різних типів накладок коливаються в межах від 0,2 до 0,5. Для фрикційної накладки по чавуну, згідно ГОСТу 12238–66, розрахунковий коефіцієнт тертя = 0,5;
– коефіцієнт запасу зчеплення. Його величина вибирається в залежності від типу і призначення автомобіля (табл.3.1).
Розміри фрикційної накладки веденого диска зчеплення визначаються по емпіричній залежності

мм ( 3.2 )

де – коефіцієнт експлуатаційного режимові зчеплення, приймається по табл.2.1;
– зовнішній діаметр фрикційної накладки веденого диска, см;
– максимальний крутний момент двигуна, Н∙см (кгс∙см).
Приймаємо зовнішній діаметр фрикційної накладки веденого диска Dз = 300 мм.
У практиці проектування зовнішній діаметр веденого диска зчеплення для однодискових муфт вибирається в межах:
- для легкових автомобілів – мм
- для вантажних автомобілів – мм.

Таблиця 3.1 - Значення коефіцієнта запасу зчеплення та коефіцієнта експлуатаційного режиму зчеплення в залежності від типу і призначення автомобіля
Тип автомобіля Легковий Вантажний Автобус, автомобіль–тягач

1,3...1,75 1,6...2,0 2,0...3,0

0,46 0,525 0,725

Внутрішній діаметр фрикційної накладки приймається рівним

мм ( 3.3 )

Середнє значення радіуса тертя визначається по формулі

мм ( 3.4 )

Визначення повного притискного зусилля можна виконати по залежності

Н ( 3.5 )

де – коефіцієнт тертя.
Число поверхонь тертя дорівнює подвоєній кількості ведених дисків муфти зчеплення (для однодискових – 2, для дводискових – 4).
Для встановлення правильності вибору основних розмірів диска зчеплення, його перевіряють по припустимих питомих тисках, які можна визначити по формулі

кгс/см2 ( 3.6 )

Припустимі значення питомих тисків для фракційних матеріалів на основі азбесту повинні знаходитися в межах 150…300 кПа (1,5…3,0 кгс/см2) і для металокерамічних накладок 1000…1500 кПа (10…15 кгс/см2). Необхідно також мати на увазі, що для фрикційних дисків, у яких мм, потрібно вибирати менші значення з метою зниження швидкості буксування на периферії.

Розрахунок натискних пружин

Визначаємо діаметр пружини , та діаметр дроту , з якого вона виготовлена, напружень і максимальної її деформації .
Діаметр циліндричної пружини = 29мм. Діаметр дроту пружини приймаємо рівним 4,5 мм.
При периферійному розміщенні натискних пружин їх число необхідно приймати кратним кількості важелів вимикання. Мінімальне число пружин – 3.
Число пружин пов'язане з розмірами зчеплення (зовнішнім його діаметром ).
Зусилля на кожну пружину при периферійному розташуванні визначається

= = 433.4 (Н) < <Р] = 700 Н, ( 3.7 )

де = 12 – число пружин механізму зчеплення.
Максимальні напруження в циліндричних пружинах при вимиканні зчеплення на 15...25% перевищуємо робочі напруження, тому розрахункова формула має такий вигляд:

= = 652,53 (МПа) < <τ] = 750 ( 3.8 )

де = 1,25 – поправочний коефіцієнт, що враховує вплив кривизни витків пружини і залежний від відношення = 6.
Максимальна деформація пружини визначається по формулі

= 0,00387(м) ( 3.9 )

де = 80000 МПа – модуль пружності при зсуві.
Для забезпечення нормальної експлуатації зчеплення необхідно, щоб при повністю виключеному зчепленні між витками пружини залишався зазор не менший = 1 мм. Повне число витків повинне бути на два витки більше робочих, тому що крайні витки підгинаються і шліфуються.
Довжина спіральної циліндричної пружини у вільному стані (без навантаження) визначається по формулі

=4,5∙11 +1∙8+3,9 = 61,4(мм) ( 3.10 )

Приймаємо довжину пружини l = 63,5 мм.

Показники довговічності або зносостійкості механізму зчеплення оцінюються по питомій роботі буксування і температурі нагрівання при рушанні з місця.
Робота буксування, що не залежить від плавності включення, дорівнює

( 3.11 )

де – число обертів колінчатого вала двигуна за хвилину при включенні зчеплення (рекомендується приймати 800 об/хв);
– момент інерції автомобіля, приведений до вала зчеплення;
– момент інерції обертових мас двигуна;
– коефіцієнт запасу зчеплення.
Момент інерції поступально рухомих і обертальних мас автомобіля, приведений до колінчатого вала двигуна, визначається по формулі

( 3.12 )

де – повна вага автомобіля, Н (кгс);
– кінематичний радіус колеса, м;
– передаточне число головної передачі;
– передаточне число першої ступіні коробки передач.
Питома робота буксування зчеплення визначається

( 3.13 )

де – сумарна поверхня тертя накладок зчеплення.
Нагрівання деталей зчеплення при одному включенні (нехтуючи випромінюванням) визначається по наступній формулі:

( 3.14 )

де – коефіцієнт, що враховує, яка частина роботи тертя сприймається диском зчеплення. Для натискного диска і маховика при однодисковому зчепленні .
Чисельні значення питомої роботи буксування і температури нагрівання при рушанні з місця на нижчих передачах не повинні перевищувати наступних значень (для одного включення) табл.3.2.

Таблиця 3.2 – Максимальні чисельні значення питомої роботи буксування і температури нагрівання при рушанні з місця




Для одиночних автомобілів 1 10 10

Привід керування зчепленням розраховується після обґрунтування і розробки його конструктивної схеми.
При проектуванні привода зчеплення необхідно забезпечити правильний підбір основних розмірів важелів і деталей, які впливають на зручність і легкість керування муфтою зчеплення.
Вибір передаточного числа привода повинний виконуватись з урахуванням наступних вимог:
– повний хід педалі зчеплення не повинний перевищувати 180 мм для вантажних автомобілів;
– вільний хід педалі повинний складати – 20...35 мм;
– зазор між вижимною муфтою і натискними важелями повинний бути рівний 2…4 мм, зазор у кожній парі поверхонь тертя 0,75…1,0 мм;
– максимальне зусилля натискання ( ) на педалі при вимиканні зчеплення не повинне перевищувати 200 Н для вантажних автомобілів.
Передаточне число (силове) привода зчеплення

( 3.15 )

Для механічних, гідравлічних приводів .
Передаточні відношення приводів зчеплень сучасних автомобілів знаходяться в межах 30...45.
Використання приведених залежностей дає можливість вирішити питання про конструктивні розміри окремих деталей і загальній кінематиці привода зчеплення. При призначенні перерізів і конфігурації деталей привода особливу увагу варто звертати на твердість важелів, тяг, валиків і інших конструктивних елементів, які впливають як на величину ходу педалі, так і на частоту включення і вимикання зчеплення.

Розрахунок гасителя крутильних коливань полягає у визначенні напруг кручення пружини гасителя.

( 3.16 )
( 3.17 )

де ; .
– зусилля, що діє на одну пружину, Н;
– діаметр дроту пружини, мм;
– середній діаметр пружин, мм.
Повне число витків пружини приймають Момент попереднього затягування пружин гасителя

( 3.18 )

Допустиме напруження кручення у пружинах приймають рівним 650...800 МПа (6500...8000 кгс/см2).

Перевірка міцності елементів веденого диска зчеплення і привода виробляється відповідно до основних положень теорії міцності.
Напруження кручення по внутрішньому діаметру шліцьового вала (первинного вала коробки передач) рівні

( 3.19 )

де – діаметр вала в небезпечному перерізі, см.
Напруження зминання шліців дорівнює

( 3.20 )

де і – зовнішній і внутрішній діаметр шліцевого вала;
– довжина сполучення шліцевого з'єднання;
– число шліців;
– коефіцієнт точності прилягання шліців;
– сила, що діє на шліци.
Напруження зрізу шліців дорівнює

( 3.21 )
( 3.22 )

де – ширина шліца.
Напруження виконаних конструкцій, виготовлених зі сталей 40Х, 18ХГТ, 30ХГТ, 12ХНЗА складають
на кручення – = 100...120 МПа (1000...1200 кгс/см2);
на зминання – = 60 МПа (600 кгс/см2);
на зріз – = 30 МПа.
Шліци вибираються за ГОСТом – 6033–51 – евольвентні і ГОСТом – 1139–58 – прямозубі.
Ведений диск з'єднується з маточиною заклепками, рідше – болтами. Заклепки розраховують на зріз і зминання, болти, крім цього, – на розтягання. Напруження зминання визначається

( 3.23 )

і зрізу

( 3.24 )

де і – число заклепок і їхній діаметр;
– відстань від центра вала до осей заклепок;
– товщина веденого диска.
Аналогічно розраховують заклепки, які кріплять фрикційні накладки до веденого вала. Напруження на зминання допускаються до 10 МПа, (100 кгс/см2); а на зріз – до 6 МПа (60 кгс/см2).
Деталі приводу зчеплення розраховуються на дію максимального зусилля натискання на педаль, прийнятого рівним 400 Н, а деталі, розташовані після обмежувача – на силу натискних пружин при виключенні зчеплення.






























4. Висновки по проекту (порівняльна технічна характеристика)

Ефективність використання автотранспортних засобів залежить від досконалості організації перевізного процесу й властивості автомобілів зберігати в певних межах значення параметрів, які характеризують їх здатність виконувати необхідні функції. У процесі експлуатації автомобіля його функціональні властивості поступово погіршуються внаслідок зношування, корозії, ушкодження деталей, утоми матеріалу, з якого вони виготовлені й ін. В автомобілі з'являються різні несправності (дефекти), які знижують ефективність його використання. Для попередження появи дефектів і своєчасного їхнього усунення автомобіль піддають технічному обслуговуванню й ремонту.
Виконанню робіт з технічного обслуговування й ремонту автомобіля передує оцінка його технічного стану (діагностування). Діагностування при технічному обслуговуванні проводять для визначення його необхідності й прогнозування моменту виникнення несправного стану шляхом зіставлення фактичних значень параметрів, вимірюваних при контролі, із граничними. Діагностування при ремонті полягає в знаходженні несправності й установленні методу ремонту й обсягу робіт при ремонті, а також перевірці якості виконання ремонтних робіт. Своєчасні технічне обслуговування й ремонт рухомого складу автомобільного транспорту дозволяють підтримувати автомобільний парк країни в справному стані.
Питомі витрати на технічне обслуговування й ремонт за термін служби автомобіля в кілька разів перевищують витрати на його виготовлення. Особливо велика трудомісткість цих робіт.
Широке застосування прогресивних технологічних процесів й автоматизованого устаткування дозволяє підвищити якість ремонту й знижує його собівартість.
В конструкції автомобіля ГАЗ – 53Б були закладені прогресивні технічні рішення, які відповідали тодішньому рівню автомобілебудування і які забезпечували високі експлуатаційні показники , економічність та надійність автомобіля. Але в даний час тодішні технічні рішення та експлуатаційні показники не відповідають вимогам. Тому потрібно вдосконалювати та розробляти нові вузли та агрегати автомобіля. Повна реалізація цих якостей вдосконалення залежить від дотримання правил експлуатації і догляду за автомобілем.
Для забезпечення бездоганної роботи усіх вузлів автомобіля слід використовувати запасні частини заводського виробництва.
На автомобілі ГАЗ – 53Б можна встановлювати сучасні агрегати і прилади , які б забезпечували нормальну роботу , що полегшує керування автомобілем, дозволяє значно підвищити рівень праці та знизити собівартість транспортної роботи .
В даному курсовому проекті пропонується покращення конструкції автомобіля, зміна деяких деталей в вузлах та агрегатах авто.
Список використаних джерел

1. Методичні вказівки до виконання контрольних робіт з дисципліни «Автомобільні засоби» студентам заочного відділення спеціальності 1505 «Автомобілі та автомобільне господарство». Вінниця ВПИ 1991р. – 71с. під ред. Кашин В.В. , Ковальчук В.П., Севостьянов С.М.
2. Автомобіль. Анализ конструкций , елементи разчета. Осепчугов В. В., Фрункин А. К., - М. Машиностроение , 1989 – 306с.
3. Методические указания к курсовому проекту по дисциплине «Автомобили». Конструирование и расчет трансмисии автомобиля. Под ред. Порсятковский В.А., Скопний В.В., Кишинев 1978 – 48.
4. Справочник техника-конструктора. Под ред. Сомоволова я. А. Киев «Техніка» 1988, 582с.
















































Додатки

Дата добавления: 23.10.2014
КП 272. Курсовий проект - Відновлення шестерні масляного насоса автомобіля КАМАЗ | AutoCad

Вступ
1. Вибір методу та режимів відновлення зношеної поверхні
1.1 Опис конструкції вузла та деталі, призначення і робота
1.2 Аналіз технічних умов на відновлення поверхні деталі і методи їх забезпечення
1.3 Вибір і обгрунтування методу відновлення поверхні
2. Розробка технології розбирання-складання вузла та технічного обслуговування
3.Розробка технологічного процесу відновлення деталі
3.1 Розрахунок та вибір припусків на відновлення
3.2 Вибір методів підготовки поверхні під відновлення
3.3 Розрахунок та вибір режимів різання при відновленні
3.4 Призначення режимів відновлення поверхні
3.5 Термічна обробка
3.6 Кінцеві методи обробки відновленої поверхні
3.7 Опис методів технічного контролю
4. Проектування технологічного устаткування та оснащення
4.1 Вибір обладнання для підготовки поверхні під відновлення
4.2 Вибір обладнання для ремонту та відновлення
4.3 Розрахунок і проектування вимірювального інструменту


За принципом подачі масла до поверхонь, що труться, система мастила комбінована, з розміщенням основної частини масла в піддоні двигуна. Під тиском змащуються найбільш завантажені вузли: корінні і шатунниі підшипники колінчастого валу, розподільного валу, коромисел, паливного насоса високого тиску і компресора. Решта поверхонь деталей, що труться, змащується розбризкуваним і стікаючим з різних поверхонь маслом.
Особливим призначенням системи мастила є забезпечення роботи гідромуфти приводу вентилятора і мастило її підшипників.
Циркуляція масла в системі створюється двохсекційним насосом при номінальному тиску 400—550 кПа (4,0—5,5 кгс/см²) і допустимому його зниженні до 150 кПа (1,5 кгс/см²) на малих частотах обертання колінчастого валу.
Очищення масла спочатку виробляється в сітчастому фільтрі масло приймачами, потім у фільтрі з паперовими фільтруючими елементами і в паралельно включеному відцентровому фільтрі додаткового очищення масла.
Охолоджування масла здійснюється в пластинчасто-трубчастому радіаторі потоком повітря, створюваним вентилятором системи охолоджування. Вентиляція картера виробляється через сапун лабіринтового типа.
Контроль за роботою системи мастила здійснюється по вказівнику тиску і лампі, що сигналізує про аварійне падіння тиску масла.
Передбачена установка сигнальної лампи, реєструючої засмічення фільтру тонкого очищення масла.
У системі мастила використовується: влітку — масло М10ГФЛ або М10Г2К, взимку — масло М87ФЗ або М8Г2К. Замінник (всесезонно) — масло ДВ-АСЗп-10В.
Заправна місткість системи мастила двигуна автомобілі КАМАВ-5320 складає 26л, автомобіля Урал-4320 — 23,7л.
Система мастила включає піддон двигуна, маслонакопичувач, насос, повно потоковий і відцентровий фільтри очищення масла, радіатор, заливний патрубок, покажчик рівня масла, сапун, контрольний - вимірювальні прилади, магістралі і трубопроводи.



Технічна характеристика:
Параметри коливань плазмотрона:
- амплітуда, мм 2,5-25
- частота, хв 8-80
Витрати газу, л/хв: 25-40
Об`єм бункера для порошку, л: 4,5
Продуктивність наплавки кг/год: 0,35-15
Номінальна напруга 3-х фазної мережі, В: 380
Номінальний струм наплавки при ПВ = 100%,А: 300
Сумарна потужність електродвигунів автом., кВ•А: 0,59
Дата добавления: 25.10.2014
ДП 273. Дипломний проект - 9 - ти поверховий житловий будинок з підземним паркінгом 27 х 43 м в м. Одеса | AutoCad

Вступ
1. АРХІТЕКТУРНО-КОНСТРУКТИВНИЙ РОЗДІЛ
1.1 Вихідні дані для проектування
1.2 Генеральний план
1.3 Об’ємно – планувальне рішення
1.4 Архітектурно-планувальне рішення
1.5 Внутрішнє та зовнішнє оздоблення
1.6 Інженерне обладнання будинку
1.7 Теплотехнічний розрахунок
2. РОЗРАХУНКОВИЙ РОЗДІЛ
2.1 Розрахунок і конструювання кругло пустотної плити перекриття
2.2 Розрахунок будівлі на вплив сейсміки
2.3 Розрахунок рами Р-1
2.4 Розрахунок та конструювання колон К-1 К-2
3.ОСНОВИ І ФУНДАИЕНТИ
3.1 Характеристика конструктивного рішення будинку
3.2 Оцінка інженерно-геологічних умов будівництва
3.3 Збір навантажень
3.4 Визначення розрахунково-фізичних характеристик грунтів

Проектуєма будівля розроблена для будівництва в м. Одеса на перетині вулиць Базарна та Маразлієвська та представляє собою житловий будинок , на 1-му та другому поверсі якого розміщені офіси а в підвалі – паркінг . На генеральном плане показаны горизонтальная и вертикальная привязка к данной местности. Посчитаны красные и черные отметки за .
На 1-му і 2-му поверсі офісні приміщення. З 3-ого по 9-ий поверх в кожній секції розміщені по 3 житлових квартири : двохкімнатних –1, трьохкімнатних, чотирьохкімнатних -1. Всі квартири покращеного планування , із просторими та великими кімнатами. Висота поверху 3.3 м від підлоги до підлоги

1. Будівельний об'єм –34481,7 м
2.Площа забудови – 1161 м2
3. Житлова площа – 2842 м2
4. Загальна площа – 7218 м2
5.Площа офісів – 2206 м

За конструктивним рішенням будівля з частковим каркасом.
Просторова жорсткість забезпечується влаштуванням внутрішніх поперечних стін і стін сходових кліток, зв’язаних з повздовжніми стінами міжповерховими перекриттями. Перекриття працює як жорсткий монолітний диск .
Для покращення жорсткості всі елементи повинні бути надійно спряженими у стиках і вузлах.
За умовну відмітку 0.000 прийнятий рівень чистої підлоги 1-го поверху Стіни.-– із силікатної цегли розміром 250 Х120Х88мм із утеплювачем з зовні зовнішніх стін пінополістиролом (γ = 100кг/м 3; λ = 0,04 Вт/м 0С; δ. =0,06м), товщина зовнішніх стін – 510 мм. Перекриття – із збірних залізобетонних панелей товщиною 220 мм , частково із монолітного залізобетону .
Перемички приймаються збірні залізобетонні частково із монолітного залізобетону .
Внутрішні перегородки- будинку запроектовані з полегшеної цегли товщиною 120 мм.
Стіни шахт ліфтів – цегляні .
Віконні блоки- металопластикові з подвійним склопакетом Сходова клітка- будинку влаштовується зі збірних залізобетонних елементів, маршів і площадок.
Підлоги- в будинку застосовані виходячи з функціональних особливостей приміщення. У житлових приміщеннях підлоги передбачені паркетні , або лінолеумові , в санвузлах та сходових клітках – керамічні .
Покрівля - будинку двоскатна, виготовлена з черепиці.
Водопровід, Газифікація, Електропостачання, слабкострумові здійснюються від міської мережі Каналізація – господарська з відводом стічних вод у зовнішню мережу міської мережі ; Опалення та гаряче водопостачання кожної квартири здійснюється від індивідуального настінного газового конвектора
Вентиляція - приточно-виитяжна



Дата добавления: 25.10.2014
КП 274. Курсова робота - Механізація процесу оброблення 4-х отворів М8 та ø13 | Компас

Технічне завдання
Вступ
1. Характеристика деталі та її призначення
1.1. Призначення деталі
1.2. Технічні вимоги та їх аналіз
1.3. Конструктивні особливості деталі
1.4. Аналіз деталі на технологічність
2. Розробка технологічного маршруту обробки
2.1. Заготовка
2.2. Маршрут обробки
3. Розробка раціональної конструкції пристосування
3.1. Аналіз початкових даних на проектування
3.2. Обґрунтування конструкції пристосування
3.4. Розрахунок зусилля обробки, затиску, розрахунок на міцність та зношування елементів пристосування
4. Оцінка точності обробки заготовки у пристосуванні
5. Висновки
5.1. Аналіз основних результатів роботи
5.2. Переваги і недоліки розробленого спорядження
Перелік використаної літератури

В результаті виконання курсової роботи, були вирішені такі задачі:
1) описано призначення деталі, її місце у вузлі, машині;
2) проведений аналіз технічних вимог на виготовлення деталі;
3) проаналізовані конструктивні особливості виробу;
4) проведений аналіз деталі на технологічність;
5) вибрано метод виготовлення заготовки та чорнові і чистові бази деталі;
6) порівняно два варіанти технологічного маршруту обробки деталі і вибрано з них найкращий;
7) проведений аналіз початкових даних для конструювання пристосування та описана конструкція спроектованого пристосування для обробки 4-х отворів М4 та Ø13;
8) проведені розрахунки на стійкість до зношування основних елементів пристосування - нарізки затискного гвинта та поверхні встановлювального пальця;
9) проведена оцінка точності та аналіз можливих похибок, які можуть виникнути контрольного пристосування та розрахунок пристосування на точність контролю заданих поверхонь;

Розроблене пристосування для свердління має такі переваги:
1) простота конструкції;
2) легкість обслуговування;
3) низька вартість;
4) достатня точність;
5) висока ремонтопридатність;
6) можливість переналагодження для обробки інших подібних деталей;
7) можливість використання як для обробки отворів М8 так і для обробки отворів Ø13.
Недоліки пристосування:
1) порівняно великі затрати часу на звільнення деталі від затиску та самого затиску;
2) порівняно невисока продуктивність;
3) потреба в ручному переміщенні пристосування із заготовкою та підведення їх до інструменту.
 


1. Пристосування для обробки отворів М8 та 13
2. Затиск - ручний
3. Верстат моделі 2H125
4. Різальний інструмент:
- свердло спіральне 2301-3597 13 Р6М5 ГОСТ 2092-77
- свердло спіральне 2301-3597 6,5 Р6М5 ГОСТ 2092-77
- мітчик М8 Р6М5 ГОСТ 3266-81
5. Режими різання:
Розсвердлювання 13:
глибина різання - t=3,25мм
подача - S=0,2мм/об
швидкість різання - V=25,73м/хв
частота обертання шпинделя - п=630об/хв
Свердління 6,5:
глибина різання - t=3,25мм
подача - S=0,2мм/об
швидкість різання - V=12,86м/хв
частота обертання шпинделя - п=630об/хв
Нарізання різьби М8:
подача - S=1,25мм/об
швидкість різання - V=9,0м/хв
частота обертання шпинделя - п=360об/хв
6. Габаритні розміри:
L B H=300 180 179
7. Послідовність обробки:
7.1. Встановити заготовку до упору з плитою, поз.1
7.2. Встановити кондукторну плиту, поз.3
7.3. Провести затиск заготовки гайкою, поз.10 з використанням розрізної шайби, поз.9
7.4. Підвести вручну пристосування із заготовкою до інструменту, так, щоб вісь інструменту збігалась з віссю кондукторної втулки, поз.6
7.5. Провести обробку отвору за 1 прохід
7.6. Повторити п.7.4.-7.5 для інших 3-ти отворів
7.7. Звільнити заготовку, відкрутивши затискну гайку на 5-6 обертів і витягнувши розрізну шайбу
7.8. Аналогічно провести обробку отворів під різьбу М8
Дата добавления: 04.11.2014
ДП 275. Дипломний проект - Проект модернізації гравітаційного бетонозмішувача з метою підвищення його продуктивності | Компас

Вступ
І. Технологічний процес виробництва залізобетонних напірних труб
1.1. Опис будови роботи технологічної лінії
1.2. Розрахунок потоків та складів
ІІ. Огляд існуючих конструкцій машин для перемішування матеріалу і обґрунтування необхідності модернізації змішувача
2.1. Загальні відомості
2.2. Змішувачі для приготування бетонних сумішей і будівельних розчинів
2.3. Обґрунтування необхідності модернізації змішувача
ІІІ. Розрахункова частина
3.1. Розрахунок основних параметрів змішувача
3.2. Розрахунок на статичну міцність проміжного вала редуктора
IV. Технологічна частина
4.1. Аналіз дефектів і технічні умови відновлення деталі
4.2. Розрахунок режимів виконання операцій
V. Експлуатаційна частина
5.1. Розрахунок експлуатаційної характеристики гравітаційного бетонозмішувача
5.2. Карта мащення гравітаційного бетонозмішувача
VI. Охорона праці та захист у надзвичайних ситуаціях
6.1. Охорона праці
6.2. Захист у надзвичайних ситуаціях
VII. Техніко-економічне обґрунтування
Список використаної літератури
Специфікація

Відповідно до мети перед нами були поставленні такі завдання:
 розглянути технологічний процес виробництва залізобетонних напірних труб;
 огляд існуючих конструкцій машин для перемішування матеріалу і обґрунтування необхідності модернізації змішувача;
 розрахувати основні параметри змішувача;
 провести аналіз дефектів і технічні умови відновлення деталі;
 розрахунок експлуатаційної характеристики змішувача;
 організація охорони праці та захисту у надзвичайних ситуаціях;
 розрахунок техніко-економічного обґрунтування модернізації машини.
 


1. Об'єм готового замісу, л................................................1200
Кількість циклів, 1/год..........................................................30
Максимальна крупність заповнювача, мм ........120
Частота обертання барабана .....................................13
Кут нахилу змішувального барабана, град.:
при перемішування...................................................15
при розвантаженні...................................................55

Електродвигун:
побужність, кВт........................................13
частота обертання, хв....................750
Привод перекидання барабана........................пневматичний
Габаритні розміри, мм:
довжина...............................................................3260
висота...................................................................3175
ширина..................................................................3300
Маса, кг.................................................................................3000
Дата добавления: 11.11.2014
ДП 276. Дипломний проект (коледж) - Електропостачання будівлі промислового призначення | Компас

Вступ.
1.Технологія виробничих процесів
2.Вибір електроприводів
3.Освітлення
4.Автоматизація технологічного процесу
4.1.Розробка принципіальної електричної схеми
4.2.Вибір пуско - захисної апаратури
4.3.Розробка схем з’єднань і підключень
5.Компоновка силової мережі та складання розрахунково – монтажної таблиці
6.Технічна експлуатація електрообладнання
7.Розробка заходів з охорони праці та охорони довкілля
Список використаної літератури

На базі цього господарства було створене підприємство ТОВ “Пеллет-енерго Ємільчино” яке займається виготовленням паливних палетів.
Будинок запроектована одноповерховим, прямокутної форми. Повздовжні і торцеві стіни виконані із кирпичу. При цьому коефіцієнт відбивання видимого світла становить 50*30*30. Вікна, двері дерев’яні оброблені антисептиками і накриті двойним шаром масляної фарби.
Стеля та стіни поштукатурені та побілені вапном. Електрозабезпечення об’єкту здійснюється від трансформаторної підстанції типу ТМ – 400/10 потужністю 400 кВА, напругою 380/220 з промисловою частотою змінного струму 50 Гц.
Опалення приміщення здійснюється електрокалорифером. Вентиляція приміщення здійснюється припливло – витяжні з механічним збудженням.
Водопостачання пункту передбачає від внутрішньої водогінної мережі ферми, система водогону – господарчо – питна.
Відвід каналізаційних стоків від санітарних пристроїв передбачене в існуючу каналізаційну мережу будівлі.
Електроосвітлення приміщення здійснюється світильниками типу з газорозрядними лампами.
Розподільчі мережі виконані кабелем АВРГ і проводом АППВ у трубах.
Напруга мережі – 380/220В. Живлення електроенергією здійснюється від зовнішньої низьковольтної мережі. У відношенні забезпечення надійності електропостачання відноситься до першої категорії.
Відповідно техніки безпеки проектом передбачено заземлення всіх струмопровідних машин. Опір заземлення не повинно перевищувати 4 Ом. Також згідно з проектом передбачено грозозахист, який виконується стальними прутами на висоті 3,5 метра.


Стан лінії-задовільний, остання реконструкція була проведена 2000 році. Споживана потужність електроенергії господарства становить 123800 квт/год за рік. З них на виробничі потреби припадає 880000 квт/год.
Лінія повітряної передачі та трансформаторної підстанції перебувають на балансі Попільнянських розподільчої мережі.
Дата добавления: 12.11.2014
КП 277. Курсовий проект - ТЕЦ - 150 МВт | AutoCad

ВСТУП
I. ВИБІР ПРИНЦИПОВОЇ СХЕМИ ЕЛЕКТРИЧНИХ З'ЄДНАНЬ
1.1 Розробка двох варіантів структурних схем станції, що проектується
1.2 Вибір генераторів
1.3 Вибір трансформаторів зв'язку, блочного трансформатора
1.4 Вибір секційних реакторів
1.5 Техніко-економічне порівняння варіантів
II. РОЗРАХУНОК СТРУМІВ ТРИФАЗНОГО КОРОТКОГО ЗАМИКАННЯ
III. ВИБІР КОНСТРУКЦІЇ РОЗПОДІЛЬНОГО ПРИСТРОЮ І РОЗРАХУНОК ШИННОЇ КОНСТРУКЦІЇ
3.1 Закритий розподільчий пристрій генераторної напруги
3.2 Опис відкритого розподільного пристрою
3.3 Вибір і розрахунок збірних шин
IV. ВИБІР ВИМИКАЧІВ І РОЗ'ЄДНУВАЧІВ
4.1 Вибір вимикачів і роз'єднувачів в РУ-220кВ
4.2 Вибір вимикачів в ланцюгах генераторів, які мають відпайки на споживача
4.3 Вибір вимикачів відхідних ліній
4.4 Вибір вимикачів у ланцюзі введення і вибір секційних вимикачів
4.5 Вибір вимикачів в системі власних потреб
V. ВИБІР КОНТРОЛЬНО - ВИМІРЮВАЛЬНИХ ПРИЛАДІВ СТАНЦІЇ
5.1 Вибір вимірювальних трансформаторів струму на РУ-220кВ
5.2 Вибір вимірювальних трансформаторів напруги
VI. ВИБІР СХЕМИ РЕЛЕЙНОГО ЗАХИСТУ
СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

У першому варіанті проектованої станції встановлюємо 3 генератора по 30 МВт та один на 60 МВт. До шин ГРУ приєднуємо три генератора. На енергосистему по ВН 220 кВ працює також один генератор в блоці з трансформатором. Згідно <3] на ТЕЦ РУ-10,5 кВ і РУ-220 кВ зв'язуються трьома паралельно працюючими трансформаторами зв'язку, які мають РПН.
У другому варіанті проектованої станції встановлюємо також 3 генератора по 30 МВт та один на 60 МВт.
В цьому варіанті схеми на енергосистему всі генератори працюють у блоці з трансформаторами. Живлення споживачів з РУ-10,5 кВ здійснюється глибоким вводом шляхом отпайки з відводів генераторів G2, G3 і G4. Трансформатори в блоках цих генераторів мають РПН. У ланцюзі генераторів з відгалуженнями на споживачів передбачаються вимикачі.
Дата добавления: 19.11.2014
КП 278. Курсовий проект - Ліфт Європа - 2000 вантажний в / п 1 т | AutoCad

Вступ
Розділ 1 Загальна частина
1.1 Загальна характеристика ліфту
1.2 Кінематична схема ліфту
Розділ 2 Технологічна частина
2.1. Технологія обслуговування редуктора
Розділ 3 Організаційна частина
3.1 Організація умов роботи редуктора
Розділ 4 Охорона праці та навколишнього середовища
4.1Охорона праці при роботі в машинному приміщенні
Розділ 5 Спеціальна частина
5.1 Вибір та перевірка тягових канатів
5.2 Розрахунок . вибір та перевірка тягового електричного двигуна
5.3 Вибір діаметру КТШ та перевірка його тягової здатності
5.4 Розрахунок та перевірка редуктора
5.5 Розрахунок зусилля уловлювачів
5.6 Розрахунок навантаження на направляючих та буфери
5.7 Вибір апаратури захисту та пуску
Висновки
Список використаної літератури

За для досягнення поставленої мети у роботі необхідно виконати низку завдань:
 дослідити ліфт Европа-2000;
 розробити кінематичну схему ліфта;
 розкрити принцип дії електрично-принципової схеми ліфту;
 навести технологію обслуговування та організацію умов роботи редуктора;
 запропонувати охорону праці при роботі у машинному відділенні;
 провести розрахунок основних показників роботи ліфту;
 здійснити вибір апаратури захисту та пуску.

  Висновки
У межах даної курсової роботи проведено розрахунок та вибор електро-механічних вузлів пасажирського ліфту в адміністративній будівлі і схеми керування.
На основі проведеного дослідження варто зробити наступний висновок:
Ліфт Європа-2000 вантажний в / п 1000кг, розмір шахти 2550х1700мм, внутрішній розмір кабіни 2100х1100 мм, двері кабіни - 1300мм, кількість тягових канатів 6, кабіна 1230, вогнестійкість EI-30. Освітлення - люмінесцентні лампи, пост управління - вертикальний модуль "Колона" з нержавіючої сталі, підсвічування кнопок, поверхові кнопки виклику з нержавіючої сталі з підсвічуванням, поручень з нерж. стали, дзеркало по задній стіні до поручня, лебідка зниженою шумності.
Ліфт призначений для підйому і спуску вантажів в супроводі пасажира габарити яких разом не перевищують номінальну вантажопідйомність ліфта і не пошкоджують обладнання та обробку його кабіни.
У межах даної курсової роботи розглядається глобоідний редуктор РГЛ-180 з передавальним числом U = 35. Проведено розрахунок діаметра шківа D = 0,72 м, так як отримане значення з урахуванням похибки в межах норми. Розрахункове напруження зминання не перевищує допустимого, отже, шків підібраний правильно.
Канат підвішується відповідно до правил ПУБЕЛ <4]. Обрано 6 окремих гілок канатів, на яких підвішується кабіна і противага.
На основі розрахунків обрано двигун АС-2-72-6 / 18ШЛ з наступними параметрами: N=3,35/1,18 кВт; n=950/275 хв-1
Дата добавления: 19.11.2014
КП 279. Курсовой проект - Двухстоечный подъемник П-97МК | Компас


Техническая характеристика.

Тип -Стационарный 2-х стоечный с электромеханическим приводом
Грузоподъемность -32 кН.
Высота подъема - не менее 1900 мм.
Время подъема -68 с.
Скорость подъема (расчетная)- 1,7 м/мин.
Расстояние между стойками -2546 мм.
Привод:
Электродвигатель (на каждую стойку) -АИР 80В4УЗ
Мощность- 1,5 к.Вт.
Синхронная частота вращения -1500 об/мин.
Напряжение питания -380 В.
Частота переменного тока -50 Гц.
Габаритные размеры:
Длина- 3340 мм.
Ширина- 1200 мм.
Высота- 2690 мм.
Масса подъемника- 760 кг.

Устройство и принцип работы.

Подъёмник представляет собой напольный подъёмный механизм, состоящий из 2 – х стоек, установленных на основании. По всей высоте стоек передвигаются каретки с подхватами, подводимыми под технологические точки на днище автомобиля. Передвижение каретки по стойке осуществляется электромеханическим приводом стойки. Для обеспечения синхронного перемещения кареток нижние концы винтов приводов соединены цепью.
Стойка представляет собой конструкцию, состоящую из сварного каркаса-стойки 1 (рисунок 2.). Стенки стойки являются направляющими для перемещения катков 3, расположенных на каретке 2.
Каретка 2 представляет собой сварную конструкцию, к нижней части которой на осях крепятся подхваты. Внутри стойки находится винт 13 с трапецеидальной резьбой Tr 42 6.
Вращательное движение от электродвигателя 30 через клиноремённую передачу передаётся винту 13 и преобразуется в поступательное вертикальное перемещение грузовой гайки 4. Грузовая гайка, упираясь в траверсу 6, перемещает каретку 2.
Натяжение ремней 29 производится перемещением каретки 19 с электродвигателем относительно верхней плиты 15. Плита верхняя приворачивается к стойке 1 и служит опорой для корпуса 16 подшипникового узла верхней части винта и шкива 7.
Кожух 9 закрывает ремённую передачу от внешних воздействий. Гайка страхующая 5 предназначена для механической страховки в случае износа или обрыва резьбы грузовой гайки 4. Страхующая гайка установлена под грузовой с зазором и даёт возможность разового опускания каретки в нижнее положение.
С внутренней и наружной стороны стойки установлены защитные ограждения 21, 22, предохраняющие винтовую передачу от внешних воздействий и защищающие обслуживающий персонал от вращающихся деталей подъёмника.
При износе грузовой гайки она опускается на страхующую гайку. Толкатель, установленный на страхующей гайке, поднимает флажок на грузовой гайке. При достижения нижнего положения флажок нажимает на аварийный выключатель 8 и блокирует включение подъёмника. В этом случае необходимо заменить грузовую гайку на новую, и только после этого возможна дальнейшая эксплуатация подъёмника.
Выключатель верхнего положения каретки 11 и выключатель нижнего положения каретки 12 срабатывают при достижении кареткой соответственно верхнего и нижнего положения, и привод отключается.
На нижнем конце винта установлена звёздочка 20. На звёздочку надета цепь, которая обеспечивает синхронное вращение винтов стоек подъёмника. Натяжение цепи регулируют, раздвигая стойки на основании подъёмника.
На каретке 2 установлен резиновый упор, служащий для предохранения двери водителя при её открывании. При необходимости упор может быть представлен на каретку противоположной стойки, где для этого предусмотрено резьбовое отверстие.
Задняя часть стойки закрывается ограждением 21. Отверстия ограждения надеваются на головки заклёпок на платиках вверху и внизу стойки. Натяжение ограждения производится поворотом гайки. Аналогично производится натяжение и переднего ограждения.
Основание представляет собой жёсткую сварную конструкцию, на которой устанавливают стойки. Основание крепится к бетонному полу фундаментными болтами. Внутри основания размещаются цепь и электрические провода.
Для удобства установки под днищем автомобиля подхваты имеют телескопическую конструкцию и крепятся к каретке на осях, обеспечивающих поворот подхватов. На подхватах установлены пластмассовые лотки для инструмента.
Дата добавления: 21.11.2014
КП 280. Курсовий проект - Реконструкція котельни в завод сухих строительных смесей мощностю 30 тыс. тонн в год | Компас

1.АРХИТЕКТУРНА ЧАСТИНА
1.1.ЗАВДАННЯ ПРОЕТКУ
1.2. ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИХ УСЛОВИЙ ПЛОЩАДКИ СТРОИТЕЛЬСТВА
1.3. ВСТУП
1.4.ОСНОВНЫЕ СТРОИТЕЛЬНЫЕ РЕШЕНИЯ
1.5. ОСНОВНЫЕ АРХИТЕКТУРНЫЕ РЕШЕНИЯ
1.6 САНИТАРНО-БЫТОВОЕ ОБСЛУЖИВАНИЕ РАБОТАЮЩИХ
2. ГЕНЕРАЛЬНЫЙ ПЛАН И ТРАНСПОРТ
2.1 СИТУАЦИОННЫЙ ПЛАН
2.2.ГЕНЕРАЛЬНЫЙ ПЛАН
2.3. ТРАНСПОРТ
2.4.ОТВОД ЗЕМЛИ
3.ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ
3.1.ХАРАКТЕРИСТИКА УСЛОВИЙ СТРОИТЕЛЬСТВА
3.2. ПРОДОЛЖИТЕЛЬНОСТЬ СТРОИТЕЛЬСТВА
3.3. ПОДГОТОВИТЕЛЬНЫЙ ПЕРИОД
3.4. КАЛЕНДАРНЫЙ ПЛАН СТРОИТЕЛЬСТВА
3.5. ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫПОЛНЕНИЯ СТРОИТЕЛЬНО-МОНТАЖНЫХ РАБОТ
3.6. КОНСТРУКТИВНАЯ ХАРАКТЕРИСТИКА ПРОЕКТИРУЕМОГО СООРУЖЕНИЯ
3.7. МЕТОДЫ ПРОИЗВОДСТВА ОСНОВНЫХ ВИДОВ СТРОИТЕЛЬНО-ДЕМОНТАЖНЫХ РАБОТ
3.8.ОБЪЕМЫ РАБОТ. ПОТРЕБНОСТЬ В ОСНОВНЫХ СТРОИТЕЛЬНЫХ МАТЕРИАЛАХ, КОНСТРУКЦИЯХ И ИЗДЕЛИЯХ.ОСНОВНЫЕ СТРОИТЕЛЬНЫЕ МАШИНЫ И МЕХАНИЗМЫ
3.9. РАБОЧИЕ КАДРЫ
3.10. МЕРОПРИЯТИЯ ПО ОХРАНЕ ТРУДА И ПОЖАРНОЙ БЕЗОПАСНОСТИ.
3.11.Список літератури

ОСНОВНЫЕ АРХИТЕКТУРНЫЕ РЕШЕНИЯ
ПРОИЗВОДСТВЕННЫЙ КОРПУС
Основные архитектурные решения производственного корпуса (ПК) завода сухих строительных смесей (ЗССС) мощностью 30 тыс. тонн в год представлены на черт. Район строительства – с сейсмичностью 8 баллов.
По пожароопасности здание ПК ЗССС относится к категории «Г» и имеет IIIа степень огнестойкости строительных конструкций.
По санитарной характеристике, согласно СНиП 2.09.04-87* производственные процессы относятся к группе 1«в».
В помещении производственного корпуса по технологическому заданию на отм. 0.000 встраивается металлическая силосная этажерка с примыкающей к ней с одной стороны шахты лифта, с другой стороны – элеваторной этажерки с лестничной клеткой. Стеновое ограждение подсилосной этажерки выполнено из профилированных листов с утеплением минераловатными матами -150 кг/м, h = 60 мм по металлическому фахверку; надсилосное помещение, лифтовая шахта и лестничная клетка с элеватором – в профлисте по металлическому фахверку. Машинное помещение лифта выполнено из кирпича по металлическому фахверку и железобетонного перекрытия и покрытия
В производственном корпусе размещаются (встраиваются):
1. Пульт управления на отм. 0.000 категории «Д».
2. Мини-котельная для обслуживания административно-бытовых помещений, встроенная на отм. 0.000 у оси 2, категории «Г». Согласно СНиП 2.01.02-85* в наружной стене на отм. 0.300 – жалюзийная решетка для подачи воздуха. В помещении выполнены оконные проемы, общая площадь которых обеспечивает требуемую вышибную поверхность. Помещение котельной имеет дверной проем для выхода на улицу.
3. Помещение компрессорной.
Все встроенные помещения выполнены в кирпиче толщиной 380, и согласно СНиП 2-7-81* (район строительства – 8 баллов), кирпичные стены армируются на пересечении кирпичных стен арматурными сетками в 2-х направлениях; кладка по высоте перебивается железобетонными полосами, связанными с кладкой анкерами.
Для эвакуации людей в производственном корпусе существует дверной проем, и выполняются ворота с калитками.
После окончания монтажа металлической этажерки, шахты лифта, элеваторной этажерки в помещении ПК выполнить по всей площади бетонные полы, кроме встроенных помещений, где будут выполнены полы согласно требованиям:
а) в мини-котельной – безыскровый терраццо с добавлением мраморной крошки;
б) в помещении пульта управления – линолеум;
в) в компрессорной – керамическая плитка.
Доступ на кровлю обеспечивается посредством установки пожарный лестницы.
АДМИНИСТРАТИВНО-БЫТОВЫЕ ПОМЕЩЕНИЯ
Здание административно-бытовых помещений прямоугольное в плане и имеет размеры в осях 1800018000. Высота этажей: 1-го в чистоте – 2700, 2-го – 3000.
Здание примыкает к производственному корпусу и отделено от него противопожарной стеной второго типа с пределом огнестойкости REI 60, MO.
Водоотвод с кровли запроектирован наружным организованным по металлопластиковым желобам и трубам системы “Rannila”.
Наружные стены и кровля приняты из панелей «Сэндвич» фирмы «БУДИМПЕКС-ДНЕПР» толщиной 100 мм.
Лестничная клетка выгораживается стеной из кирпича толщиной 120 мм. Перегородки запроектированы в санузлах и душевых из керамического кирпича, все остальные из гипсокартона по стальному каркасу с прокладкой утеплителя.
Заполнение проемов в наружных стенах принято металлопластиковыми переплетами с однокамерными стеклопакетами.
Цоколь здания выполняется из керамического кирпича с утеплением с внутренней стороны.
С наружной стороны цоколь облицовывается керамической морозостойкой плиткой.
Основные технико-экономические показатели:
• площадь застройки  149,33 м2;
• общая площадь  1168,36 м2;
• строительный объем  271,38 м3.
Дата добавления: 23.11.2014
ДП 281. Дипломний проект - Багатофункціональний комплекс з закладом торгівлі,плавальним басейном, офісними приміщеннями та житлом у Волинській області | AutoCad

Вступ
Вихідні дані проекту
1. Архітектурно-будівельна частина
1.1 Об’ємно-планувальне рішення
1.2 Архітектурно-конструктивне рішення.
1.3 Будівельна фізика
Техніко-економічні показники
2.1. Проектування та розрахунок металевого купола
2.1.1 Вихідні дані
2.1.2 Статичний розрахунок купола. Результати розрахунку
2.2 Розрахунок попередньо напруженої панелі покриття
2.2.1 Дані для проектування. Навантаження, що діють на панель покриття
2.2.3 Розрахунок плити панелі покриття П-7
2.2.4 Розрахунок поперечних ребер
2.2.5 Розрахунок поздовжніх ребер
2.2.6 Геометричні характеристики зведеного перерізу панелі
2.2.7 Визначення втрат попереднього напруження в арматурі
Розділ 3. Технологія та організація будівництва
Вихідні дані
Календарне планування
3.1. Визначення номенклатури та об’ємів робіт
3.2 Вибір методів виконання робіт
3.3. Підбір монтажних кранів
3.4. Визначення необхідності у транспортних засобах
Розділ4 Інженерні мережі
Вихідні дані
4.1. Опалення
4.2. Вентиляція
4.3. Водопостачання
4.4. Каналізація
4.5. Зовнішнє електропостачання, електроосвітлення та електрообладнання
4.6. Телефонізація
4.7. Пожежна сигналізація
Розділ 6. Охорона праці та навколишнього середовища
Лiтература

Багатофункціональний комплекс запроектовано для покращення системи обслуговування населення в приміській зоні та поселення зарубіжних делегацій в готельні номери.
Комплекс являє собою каркасну споруду, яка складається із двох об’ємів: 16-ти поверхового комплексу із підвальним приміщенням, і 2-х поверхової прибудови з побутовими приміщеннями. 16-ти поверховий комплекс можна умовно розділити на два сектори: 1-й сектор ( 3-7 поверх- типові, запроектовані для адміністративних приміщень, офісного типу), 2-й сектор(8-14 поверх- типові, запроектовані для житлових приміщень, готельного типу), 15-16 поверхи запроектовані як технічні.
Перший поверх та другий виконані як торгово- розважальні де запроектовано басейн з побутовими приміщенями, масажною, тренажерними залами, фітнес-клубом, сауною, російською та турецькими лазнями, кафе на 20 посадкових місць з літньою терасою, банківськими приміщеннями.
Для вирішення інженерного забезпечення комплексу передбачено в підвальній частині влаштування технічних приміщень - насосної, теплового пункту і також технічних приміщень для обслуг.


1. Висота поверху : 3300 мм (3,3 м).
2. Висота приміщення: 3120 мм (3,12 м).
3. Розміри будівлі в осях: 43380 x44000 мм (43,38 x44,00 м).
4. Фундаменти: 2-х пов.добудови – блочні із монолітною з/б подушкою, 16-ти пов. комплексу – фундаментна з/б плита.
5. Зовнішні стіни: 2-х пов.добудови- цегляні в=510мм. із зовнішнім утеплювачем (напівжорсткі базальтові плити), перегородки цегляні в=120мм, 250мм, 380мм.
6. Зовнішні стіни: 16-ти пов. комплексу-залізобетонні колони товщиною в=400мм, пінобетон в=300мм. із зовнішнім утеплювачем (напівжорсткі базальтові плити), перегородки цегляні в=120мм, 250мм, 380мм, залізобетонні товщиною в=250мм, 200мм.

Техніко-економічні показники:
Поверховість будинку, Пов. -16
Загальна площа, м2- 10426
Корисна площа, м2- 7934
Розрахункова площа, м2- 7856
Будівельний об’єм будинку, м3 -477477 / 5236
у т.ч. нижче 0.000
Площа забудови, м2 -1585
Площа ділянки, м2 -6999
Дата добавления: 13.12.2014
ДП 282. Дипломний проект - Виготовлення деталі типу корпус | Компас

Реферат
Вступ
1. Загально-технічна частина
1.1.Службове призначення деталі, аналіз технічних умов та норм точності
1.2. Попереднє встановлення типу та організаційної форми виробництва
2. Технологічна частина
2.1. Попереднє встановлення типу та організаційної форми виробництва
2.2. Відпрацювання конструкції деталі на технологічність
2.3. Вибір способу отримання заготовки
2.4. Вибір методів оброблення поверхонь
2.5. Вибір та розрахункове обґрунтування технологічних баз
2.6. Структурний аналіз і синтез варіантів технологічного процесу, встановлення оптимального
2.7. Детальне розроблення оптимального варіанта технологічного процесу
2.7.1. Встановлення припусків та міжопераційних розмірів, проектування заготовки
2.7.2. Розмірний аналіз технологічного процесу
2.7.3. Визначення режимів різання та вибір технологічного устаткування
2.7.4. Встановлення контрольних, допоміжних і транспортних операцій
27.5. Нормування технологічного процесу
3. Конструкторська частина
3.1. Пристрій свердлильний
3.1.1. Службове призначення пристрою
3.1.2. Розрахунок сумарної похибки
3.1.3. Структурний аналіз
3.1.4 . Остаточний розрахунок пристрою на точніст
3.1.5. Розрахунок сили затиску
3.1.6 . Спеціальні види розрахунків
3.1.7 . Економічне обґрунтування
3.1.8 . Опис конструкції
3.2. Пристрій для встановлення та закріплення заготовки на токарно – карусельному верстаті
3.3. Пристрій для контролю торцевого биття
4. Розрахунок, компоновка, плану дільниці і цеху
4.1. . Розрахунки річної працемісткості та верстатомісткості, кількості основного та допоміжного обладнання, уточнення типу виробництва, організаційної форми роботи
4.1.1 . Розрахунок річної верстатомісткості виготовлення виробу
4.1.2 Розрахункове встановлення типу виробництва
4.1.3 Розрахунок необхідної кількості основного виробничого устаткування для виготовлення всіх деталей виробу укрупненим методом
4.2. . Визначення складу та розрахунки площі
4.3. . Вибір типу приміщення, компоновка дільниці
4 .4. Технологічний план дільниці
5. Організаційна частина
6. Безпека в надзвичайних ситуаціях
7. Охорона праці
8. Економічний розділ
Висновок
Список використаної література
Додатки
 


Деталь виготовляється із матеріалу СЧ20 ГОСТ 1412-89, який легко піддається обробці.
Клас : Сірий чавун.
Використання в промисловості: Він широко застосовується в машинобудуванні для виливка станин верстатів і механізмів, поршнів, циліндрів.
Межа міцності σв = 200 МПа. Твердість HB 10 -1 = 143 - 255 МПа.

ВИСНОВОК
В даній дипломній роботі наведено розрахунок технології виготовлення деталі типу корпус.
В загально-технічній частині описано службове призначення деталі, а також аналіз технічних умов та норм точності. Також в цій частині встановлено тип виробництва – середньосерійнеі організаційну форму виробництва – групова.
В другій частині курсової роботи наведено відпрацювання конструкції деталі на технологічність і встановлено, що по всіх показниках технологічності деталь є технологічною. При виборі способу отримання заготовки проведено розрахунок економічних показників вартості отримання заготовки, і встановлено, що найбільш ефективнішим методом є метод литво в землю. В цьому розділі також наведено вибір та обґрунтування технологічних баз. Встановлення припусків і між операційних розмірів наведено для розміру 5_^0,012. При розмірному аналізі розраховано міжопераційні розміри і розміри заготовки. Для даної деталі розраховані режими різання, а також проведено нормування технологічного процесу.
Розроблено три пристрої: Пристрій для оброблення на токарно – карусельному верстаті, пристрій для свердління, та контрольний пристрій. Пристрої розраховано та обрано їхню оптимальну схему компоновки.
В червертій частині проведено розрахунок і компоновка дільниці. Наведено розрахунки річної працемісткості та верстатомісткості, а також вибрано тип приміщення,і проведена компоновка дільниці.
У наступному розділі обрано організаційну форму виробництва.
У розділі охорони праці проведена оцінка безпеки виробу, виробничого процесу та будівлі. Приведено експертні поради що до підвищення безпеки дільниці в цілому. Розраховано заземлення та описання заходів для зменшення шуму.
У економічній частині було розраховано та обґрунтовано доцільність розроблення вищезгаданого техпроцесу. Порівняння проектованого та заводського техпроцесів та визначення економічного ефекту від впровадження нового техпроцесу.
На підставі отриманих результатів робимо висновок що спроектований технологічний проес, для заданої програми, є раціональнишим за заводський.
Дата добавления: 15.01.2015
283. ГПВ Проект газоснабжения топочной | AutoCad

Робочим проектом передбачається спорудження у відособленому приміщенні топочної з встановленням опалювального котла «Атон» - АОГВД-50Х на газоподібному паливі, прокладання відповідного газопроводу низького тиску до топочної, устрій системи внутрішнього газопостачання, спорудження теплової схеми, устаткування вентиляції, освітлення топкової, електропостачання встановлюваного електроустаткування, автоматизація технологічних процесів, аварійна сигналізація, відвід димових газів.
- паливо-природний газ теплоспроможністю Q=8000 ккал/нм³;
- постачання газу прийнято від існуючого газопроводу низького тиску, що проходить по вул. Незалежності, відповідно до ТУ ВАТ «Київоблгаз».
Технічна характеристика котла «Атон» - АОГВД-50Х:
- номінальна продуктивність – 50 кВт
- коефіцієнт корисної дії – не менше 83,0%
- витрати палива – 5,6 нм³/год
- розрідження за котлом, не більше – 40 Па
- температура гарячої води - 95°С.

Витрати газу на котел «Атон» складає 5,6 нм³/год.
Облік витрат газу передбачений за допомогою проектованого вузла обліку витрат газу G-6, на вузлі обліку установлюється відстійник і необхідні контрольно-вимірювальні прилади.

Після вузла обліку газу по внутрішньому газопроводу надходить до пальників котла.
В топочній додатково до автоматики газового обладнання проектом передбачено загальна автоматика безпеки топочної, що відключає через електромагнітний клапан подачу газу при загазованості топочної . В приміщені встановлюються прилади, що сигналізують про загазованість.
Експлуатація газового обладнання при несправній автоматиці, а також у відсутності обслуговуючого персоналу, заборонена.
Проектовані внутрішні газопроводи монтувати зі сталевих електрозварних прямо шовних труб ГОСТ 10704-91 гр. В ГОСТ 10705-89 з антикорозійним покриттям олійною фарбою за два рази в яскраво-жовтий колір.
На газопроводах до котлів установлена необхідна відсічна, запірна і продувна арматура, що забезпечує безпека роботи і технологічне регулювання витрати газу.
Газопроводи кріпити до будівельних конструкцій топкової за допомогою кронштейнів і підвісок відповідно до тип. серії 5-905-8.
До пуску теплогенераторної необхідно виконати іспит газопроводу на міцність і щільність. Іспитовий тиск і тривалість іспитів прийняти відповідно до ДБН В. 2.5-20-2001.
Котли комплектуються газовими пальниками і автоматикою безпеки яка забезпечує безпечну роботу й автоматичне регулювання в заданому режимі.
Експлуатація теплогенераторної при несправній автоматиці заборонена. Перед початком експлуатації газового обладнання необхідно:
- провірити приміщення топочної протягом 10-15 хв.;
- перевірити, чи закриті всі газові крани ( крім продувних);
- виконати продувку газопроводів;
- закрити продув очний кран;
- перевірити наявність тяги в газоповітряному тракті;
- перевірити наявність напруги в електромережі.
Всі роботи з монтажу виконувати, суворо дотримуючи «Правил безпеки систем газопостачання України», СНІП, ДБН, вимоги технічних описів і інструкцій з експлуатації заводів-виготовлювачів устаткування.

Дата добавления: 20.01.2015
КП 284. Курсовой проект - 9-ти этажная торцевая правая 27-ми квартирная блок-секция 22,4 х 12,0 м | AutoCad

1. Объемно-планировочное решение
2. Конструкционное решение здания
3. Технико-экономический показатель
4. Инженерное оборудование
5. Теплотехнический расчёт наружной ограждающей конструкции
6. Список литературы

Технико-экономические показатели
- Общая площадь здания – 2070,11 кв.м.
- Площадь застройки – 325,70 кв.м.
- Полезная площадь – 1824,74 кв.м.
- Расчетная площадь – 1620,56 кв.м.
- Строительный объем - 8252,40 куб.м.

Проектируемое жилое здание предназначено для постоянного проживания. Форма здания в плане прямоугольная с размерами между осями 1-7 22,4 м, А-В 12,0 м. Здание имеет 9 этажей. Высота этажа 2,8 м. Полная высота здания 28,73 м. Главный вход в здание расположен со стороны главного фасада. При входе запроектированы лестничная клетка и лифт.
Объемно-планировочное решение здания подчинено требования функционального зонирования. На типовом этаже расположены 3 квартиры соответственно 2-х, 3-х и 5-ти комнатные. 2-х комнатная квартира: коридор, две комнаты, кухня, с/у, ванная комната, выход на балкон, встроенные шкафы. 3-х комнатная квартира: коридор, три комнаты, кухня, с/у, ванная комната, выход на два балкона, кладовая, встроенные шкафы. 5-ти комнатная квартира: коридор, два с/у, кухня, ванная комната, 5 комнат, выход на балкон. Квартиры первого этажа не имеют выхода на балкон, окна защищены решёткой.


Фундамент ленточный сборный из сборных ж/б плит (цоколь tплит=0.3м)
Стены здания из сборных керамзитобетонных стеновых панелей по типовой сортировке (t=0.3м).
Перегородки – однослойные ж/б панели (t=0.06м).
Перекрытия – сплошные ж/б панели (t=0.12м), опертые по контуру.
Дата добавления: 26.01.2015
КП 285. Курсовий проект - Електрифікація технологічних процесів у кормоцеху для свиноферми | AutoCad

Вступ
1. Технологічна частина
2. Розрахунок вентиляції
3. Розрахунок електричного освітлення
4. Розрахунок і вибір апаратів керування та захисту
5. Розрахунок і вибір силових і освітлювальних ел. проводок
6. Розрахунок електричних навантажень
7. Заходи по компенсації реактивної потужності
8. Основні технічно-економічні показники
9. Заходи з безпеки праці
Висновки
Використана література

Графічна частина:
Технологічна схема кормоцеху для свиноферми
План кормоцеху з нанесенням електро-силового обладнання
Електрична принципова схема керування подрібнювачем ИКМ-Ф-10
Електрична принципова схема керування змішувачем С-12.

Перелік технологічного обладнання кормоцеху:





















В даній бакалаврській роботі проведено електрифікацію виробничих процесів кормоцеху для свиноферми.
Зроблено розрахунок і вибір технологічного обладання кормоцеху. Розраховано електричне освітлення, вентиляцію. Проведено вибір та розрахунок пускозахисної апаратури, силової і освітлювальної проводок.
Розроблені заходи по компенсації реактивної потужності та проведено розрахунок електричних навантажень.
Визначили втрати при пуску електричного двигуна, які відповідають вимогам і забезпечують нормальну роботу як споживачів лінії, так і пускозахисної апаратури.
Всі розрахунки були проведені згідно методики і норм проектування , які приведені у використаній літературі.
Дата добавления: 30.01.2015

На страницу 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

© Rundex 1.2
 
Cloudim - онлайн консультант для сайта бесплатно.