Добавить проект
Прочитать правила
Платный доступ
Авторизация:
Информация


7%20%20%20

Найдено совпадений - 3251 за 1.00 сек.


РП 436. ОПС Выполнение комплекса работ по строительству новой ТПП 20/6 кВ | AutoCad
1 Защищаемая площадь – ТПП 20/6 кВ 329,4 м2;
2 Высота помещений - не ниже 3,0 м;
3 Электропроводка в здании - негорючая;
4 Класс взрывопожароопасности по ПУЭ - П-IIа;
5 Пределы температур - +10…+40Сº;
6 Первичный признак пожара - дым, тепло;
7 Электроснабжение системы сигнализации по I категории надежности;
8 Наличие атмосферных осадков в виде дождя, снега и т.д.;
По условия эксплуатации оборудования запыленность, дымные образования, вибрация и агрессивные среды отсутствуют.

Инженерная система состоит из:
• Пульта управления «С2000-М»;
• Приборов приемно-контрольных охранно пожарных «Сигнал 20М»; «Сигнал-20П»;
• Релейного блока «С2000-СП1исп.01»;
• Блока бесперебойного питания «РИП-24»;
• Охранных и пожарных извещателей;
• Звуковых и световых оповещателей.

Система пожарной сигнализации состоит из приемно-контрольных приборов «Сигнал 20М» и «Сигнал-20П монтируемых в здании ТПП 20/6 кВ. Приборы Сигнал 20 служит для круглосуточного контроля обстановки в помещениях ТПП 20/6 кВ. Приборы, монтируется в шкафу ЩМП-4, устанавливаемого на стене в помещении КРУ 6 кВ 2 секция, при помощи монтажных частей, входящих в комплект поставки прибора. Источник бесперебойного питания “РИП-24”, служащий для обеспечения бесперебойного питания системы ОС согласно СП 5.13130.2009, а так же остальное оборудование (автомат защиты, распределительная коробка телефонная, релейный блок «С2000-СП1,) монтируется внутри шкафа ЩМП-4. Кабель необходимо располагать на расстоянии не менее 0,5м от силовых и осветительных цепей, прокладывать допускается только в лотках с контрольными и измерительными цепями напряжением не выше 110В. Приборы Сигнал 20 служат так же для включения там системы оповещения о пожаре и контроля линий оповещения на обрыв и короткое замыкание (п.13.14.3 СП5.13130.2009), релейные блоки «С2000-СП1исп.01» служат для управления инженерными системами вентиляции и передачи сигналов в систему телемеханики.
Кабеля системы ОПС необходимо располагать на расстоянии не менее 0,5м от силовых и осветительных цепей, прокладывать допускается только в лотках с контрольными и измерительными цепями напряжением не выше 110В.
Все провода и кабели, прокладываемые в помещениях ТПП 20/6 кВ, по стенам и потолку, выполнить в гофротрубе. Проходы кабелей сквозь стены провода выполнить в гофротрубе. Линии питания 220 и линии на отключение вентиляции проложить в пластиковом кабель-канале по стенам и в лотках по стенам. Места проходов кабельных линий сквозь стены заделать огнезащитным заделочным составом «Формула КП».
Автоматической пожарной сигнализацией оборудуются все помещения независимо от площади, кроме помещений:
- с мокрыми процессами (санузлы и т.д.);
- категории Д.
Устанавливаемые приборы интегрированы в единую систему по интерфейсу RS 485 посредством пульта контроля и управления «С2000М». В пульте управления "С2000-М с помощью программного обеспечения НВП "Болид" прописываются сценарии управления всеми реле всех приборов системы, а также конфигурация и логика работы всей системы в целом. Устанавливаемые приборы так же конфигурируются с помощью программного обеспечения "Uprog" НВП "Болид" по интерфейсу RS 485.
Сигналы о пожаре, тревоге и неисправности системы ОПС передаются в систему телемеханики.
Дата добавления: 13.03.2015
КП 437. Курсовой проект - Железобетонные конструкции одноэтажного промышленного здания с мостовыми кранами в г. Казань | AutoCad

1. Компоновка поперечной рамы и определение нагрузок
1.1 Компоновка поперечной рамы
1.2 Определение постоянных и временных нагрузок на поперечную раму
1.2.1. Постоянные и временные нагрузки
1.2.2. Крановые нагрузки
1.2.3. Ветровая нагрузка
3.Проектирование колонны.
4. Проектирование стропильных конструкций
4.1. Расчет элементов нижнего пояса балки
4.2. Расчет элементов верхнего пояса балки
4.3. Расчет стоек балки
4.4. Расчет опорного узла
Список используемой литературы


1. Шаг колонн в продольном направлении, м 6,00
2. Число пролетов в продольном направлении. 5
3. Число пролетов в поперечном направлении. 3
4. Высота до низа стропильной конструкции,м 10,80
5. Тип ригеля и пролет ФС-18
6. Грузоподъемность (ТС) и режим работы крана 16т
7. Тип конструкции кровли 2
8. Класс бетона монол. констр. и фундамента В 20
9. Класс бетона для сборных конструкций В 30
10. Классбетона пред. напряженных конструкций В 40
11. Вид бетона строп. констр. и плит покрытия тяжелый
12. Класс арматуры монол. констр. и фундамента А300
13. Класс арм-ры сборных ненапр. конструкций А400
14. Класс пред. напрягаемой арматуры К-1400
15. Тип и толщина стеновых панелей ПСЯ-200
16. Проектируемая колонна по оси <Б>
17. Номер расчетного сечения колонны 4-4
18. Глубина заложения фундамента, м 2,55 19. Усл. расчетное сопротивление грунта 0.28
20. Район строительства Казань
21. Тип местности С
22. Влажность окружающей среды 90%
23. Класс ответственности здания II
24. Метод натяжения ПН арматуры механ.
 
Дата добавления: 16.03.2015
РП 438. КМ Стальные конструкции покрытия торгово - развлекательного центра в г. Нижний Новгород | AutoCad

В качестве основных несущих конструкций зенитный фонарь в осях "1-8"/"Г-Д" разработаны двухскатные стропильные фермы с параллельными поясами с уклоном 10% по типу" Молодечно" серия 1.460.3-23.98 пролетом 12.0 м, шаг 6,0м и треугольные подстропильные фермы о типу" Молодечно" серия 1.460.3-23.98 пролетом 12.0 м, шаг 12,0м . Подстропильные фермы устанавливаются на надколонники железобетонных колонн. Профнастил укладывается по прогонам. Жесткость покрытий обеспечивается установкой горизонтальных связей в уровне верхнего пояса, а так же системой вертикальных связей и распорок.
В качестве основных несущих конструкций зенитный фонарь в осях "3-18"/"Ж-Н" разработаны двухскатные стропильные фермы с параллельными поясами с уклоном 10% по типу" Молодечно" серия 1.460.3-23.98 пролетом 12.0 м, шаг 6,0м и треугольные подстропильные фермы о типу" Молодечно" серия 1.460.3-23.98 пролетом 12.0 м, шаг 12,0м . Подстропильные фермы устанавливаются на надколонники железобетонных колонн. Профнастил укладывается по прогонам. Жесткость покрытий обеспечивается установкой горизонтальных связей в уровне верхнего пояса, а так же системой вертикальных связей и распорок.
Рабочие чертежи марки КМ выполнены в соответствии с СП 20.13330.2011 "Нагрузки и воздействия" и СП 16.13330.2011 СНиП II-23-81* " Стальные конструкции" и являются основанием для разработки чертежей КМД.
Марки сталей металлоконструкций указаны в ведомости элементов на чертежах.


Ведомость комплекта чертежей. Ведомость ссылочных документов. Общие данные.
Нагрузки на оголовки колонн.
План по верхним поясам ферм.
План понижним поясам ферм.
Разрезы А-А...И-И.
Разрезы К-К...Т-Т
Узлы 1-5.
Узлы 6-9.
Узлы 10-14.
Узлы 15-19.
Разрез П-П, узлы 18-22.
Ферма Ф1.
Ферма Ф2.
Подстропильная Ферма ПФ1.
Подстропильная Ферма ПФ2.
Подстропильная Ферма ПФ3.
Оголовок колонны ОК1.
Оголовок колонны ОК2.
Оголовок колонны ОК3.
Оголовок колонны ОК4.
Схема раскладки стеновых прогонов.
Дата добавления: 20.03.2015
КП 439. Курсовой проект - Основы расчета конструкции АТС Зил-4331 | AutoCad

Введение
1.Анализ тяговых свойств АТС
1.1 Внешняя скоростная характеристика двигателя (ВХС)
1.2 Выбор передаточных чисел трансмиссии АТС
1.3 Силовой баланс автомобиля
1.4 Динамический паспорт автомобиля
1.5 Ускорение при разгоне
1.6 Время и путь разгона
1.7 Топливно-экономическая характеристика автомобиля
1.8 Анализ тормозных свойств автомобиля
1.9 Анализ устойчивости и управляемости АТС
2 Расчет коробки передач
2.1 Расчет деталей коробки передачи на прочность
2.1.1 Расчет шестерни
2.1.2 Расчет валов
2.1.2.1Расчет вторичного вала
Заключение
Список использованных источников

Исходные данные для выполнения курсового проекта
Автомобиль /модель/ - 433110
Марка автомобиля - ЗиЛ
Тип кузова - Бортовая платформа
Двигатель - ЗИЛ-508.10
Число и расположение цилиндров/система питания - 8V
Литраж, см'3 /л/ - 6000
Мощность эффективная Ne, кВт - 110
Крутящий момент двигателя, Ме, Нм - 402
Частота вращения коленчатого вала, п, мин-1 - 1900
Максимальная частота вращения nmax, мин-1 - 3840
Номинальная частота вращения коленчатого вала, nн, мин-1 - 3200
Габариты:
длина автомобиля, мм - 7610
ширина автомобиля, мм - 2500
высота автомобиля, мм - 2700
база автомобиля, мм - 4500
Колея:
передних колес, мм - 1930
задних колес, мм - 1830
Масса:
снаряженная, кг - 4980
полная, кг - 12000
груза, кг - 6500
количество пассажиров - 2
Колесная формула - 4x2
Число передач - 5
Шины - 9.00R20
Передаточные числа:
на I передаче - 7,18
на II передаче - 4,00
на III передаче - 2,40
на IV передаче - 1,38
на V передаче - 1,00
на прямой передаче - 1,00
главной передачи - 6,33

В результате проделанной работы были выбраны исходные данные и рассчитаны эксплуатационные свойства автомобиля ЗиЛ-433110. Рассчитана внешне-скоростная характеристика ДВС. Рассчитан силовой баланс. Результаты расчета показали, что значение максимальной скорости соответствует паспортным данным. Рассчитаны показатели тормозной динамики.
Показатели тяговой динамики (время и путь разгона) соответствуют характеристикам указанных в паспортных данных данной марки АТС.
Произведен поверочный расчет элементов коробки передач. Результаты расчетов не превышают допустимых значений.
Дата добавления: 22.03.2015
КП 440. Курсовой проект - Пластинчатый конвейер | Компас

Задание
1 ИСХОДНЫЕ ДАННЫЕ
2 ПРОЕКТИРОВАЧНЫЙ РАСЧЕТ
3 ПРОВЕРОЧНЫЙ РАСЧЕТ
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Исходные данные
Параметры трассы конвейера:
L1 = 25 м;
L2 = 10 м;
L3 = 20 м;
β = 18˚.
Транспортируемый груз –руда;
плотность, γ = 2,4 т/м3;
максимальный размер частиц, аmax = 100 мм;
процентное содержание аmax в пробе Ан = 15 %;
влажность груза – 12 %.
Производительность конвейера плановая, Qсут = 4800 т/сутки.
Производительность загрузочного устройства, Qmax = 5100 т/сутки.
Число рабочих дней в году, Д = 365 дней.
Число смен в сутки, nсм = 2.
Число часов в смене, tсм = 7 ч.
Температура окружающей среды: летом - + 32 ̊C;
зимой - – 20 ̊C.
Влажность воздуха – 63 %
Запыленность воздуха ¬– 18 мг/м3.
Коэффициент использования по рабочему времени КВ = 0,90.
Коэффициент неравномерности загрузки КН = 0,91.


Ширина полотна 1000 мм
Шаг тяговой цепи 400 мм
Скорость ковейера 0,6 м/с
Максимальная производительность 20 т/ч

Характеристика привода
Редуктор ЦЗУ-400; i = 100
Электродвигатель 4А200Л6У3; N = 30 квт; n = 980 об/мин
Зубчатая пердача m = 6; z1 = 18; z2 = 80
Клиноременная передача D1 = 100; D2 = 100 - 250
Дата добавления: 24.03.2015
РП 441. АР КР ЭС ОВ ВК ПОС ПЗУ ООС ТХ ЭЭ ПБ Реконструкция промышленного здания в г. Тула | PDF

1) Степень огнестойкости производственного здания - II. Для перевода существующего Цеха из III степени огнестойкости во II следует предусмотреть огнезащиту основных несущих металлических конструкций. Для этого необходимо выполнить окрашивание металлических конструкций огнезащитной краской «Аквест-911» компании «Химсервис» г. Тулы .
2) Класс конструктивной пожарной опасности здания С0.
3) Класс функциональной пожарной опасности существующего и пристраиваемого Цеха - Ф 5.1
4) Класс функциональной пожарной опасности пристраиваемого АБК – Ф4.3
5) За условную отметку 0,000 принят уровень чистого пола первого этажа, соответствующий абсолютной отметке + 196,75.
6) Размеры существующего Цеха в осях 48х24м.
7) Размеры пристраиваемого АБК в осях 14,3х23,6м.
8) Размеры пристраиваемого Цеха в осях 15х75м.
9) Этажность существующего Цеха – 1.
10) Этажность пристраиваемого АБК– 3.
11) Этажность пристраиваемого Цеха – 1.
12) Количество этажей существующего Цеха – 1.
13) Количество этажей пристраиваемого АБК– 3.
14) Количество этажей пристраиваемого Цеха – 1.
15) Высота производственного здания (пожарно-техническая) – 9, 5 м.
16) Высота первого этажа АБК (от пола до пола) – 4,5м. Высота второго этажа АБК (от пола до пола) – 3,7м. Высота третьего этажа (от пола до верхней границы кровли) переменная – от 3,07м до 4,41м.
17) Высота этажа пристраиваемого Цеха (от пола до верхней границы кровли) – 9,20 м.
18) Площадь этажа производственного здания – 2684 м2. (В нее входят площадь этажа АБК – 390,9 м2 , площадь этажа пристраиваемого Цеха – 1130 м2, площадь существующего Цеха – 1164 м2)
19) Площадь расчетная производственного здания – 3133 м2. (В нее входят расчетная площадь АБК – 935,47 м2, расчетная площадь пристраиваемого Цеха – 1076 м2, расчетная площадь существующего Цеха - 1121 м2 .
20) Площадь общая производственного здания –3 464 м2. ( В составе : -общая площадь АБК – 1170м2, -общая площадь пристраиваемого Цеха – 1153 м2, -общая площадь существующего Цеха – 1141 м2.)
21) Строительный объем производственного здания после реконструкции – 30 750 м3. Конструктивная схема пристраиваемого АБК – каркасная, с жестким опиранием колонн на фундамент и жестким сопряжением ферм с колоннами.
Конструктивная схема пристраиваемого Цеха – каркасная, с жестким опиранием колонн на фундаменты и шарнирным сопряжением ферм с колоннами.
Межэтажная связь в АБК осуществляется за счет двух эвакуационных внутренних лестниц, состоящих из монолитных ж/б ступеней по металлическим косоурам.
Ширина марша -1200 мм.
Высота подступенка – 160 мм.
Ширина ступени – 280 мм.
 


Предисловие
Описание объекта реконструкции
Обоснование принятых объемно-пространственных и архитектурно-художественных решений.
Обоснование и описание внутренней отделки помещений
Описание архитектурно-строительных мероприятий, обеспечивающих защиту помещений от шума, вибрации и другого воздействия
Фасад Д2-А1. Фасад А-Д2.
Фасад 142-12. Фасад 11-9.
План на отм. 0,000
Фрагмент 1 плана на отм. 0,000
Фрагмент 3 плана на отм. 0,000
Фрагмент 1 плана на отм. +4,500
Эскиз ОК-3
Фрагмент 1 плана на отм. +8,200
Фрагмент 2 плана на отм. 0,000
Фрагмент 2 плана на отм. +3,000
Экспликация полов
Спецификация заполнения проемов. Ведомость перемычек. Спецификация сборных перемычек. Эскиз ОК-6. Эскиз Д1
Ведомость отделки помещений
 
Дата добавления: 26.03.2015
КП 442. Курсовой проект - Каток вибрационный ДУ-58 | AutoCad

Введение
1. Обоснование темы курсового проекта
1.1. Описание проектируемой конструкции и внесенных нее изменений
1.2. Назначение и рациональная область применения
2. Расчет основных параметров
2.1. Выбор основных параметров катка
2.2. Тяговый расчет
2.3. Баланс мощности
2.4. Выбор гидромотора привода вибратора
2.5. Расчет дебалансов
2.6. Расчет тормозов вибрационного катка
2.7. Техническая характеристика катка
3. Расчет на прочность
3.1. Расчет на прочность оси штока гидроцилиндра
3.2. Выбор и расчет амортизаторов 3.3. Расчет подшипников дебалансного вала
Заключение
Список используемых источников

Каток самоходный вибрационный ДУ-58 предназначен для уплотнения отсыпанных и предварительно спланированных слоев грунта и материалов дорожных оснований.
Вибрационные катки, как и статические, применяют при производстве ремонтных дорожных работ, а также при строительстве автомобильных дорог. Вибрационные катки с гладкими вальцами в последние годы находят все более широкое применение при уплотнении гравийных, щебеночных и асфальтобетонных смесей. Вибрационные самоходные катки по сравнению со статическими имеют меньшую металлоемкость, более маневренны и транспортабельны, при правильной организации работ обеспечивают требуемую плотность и ровность поверхности уплотняемых материалов. Самоходные вибрационные катки для уплотнения дорожных покрытий изготавливают преимущественно двухвальцовыми двухосными. В вибрационных двухвальцовых катках вибрационным может быть любой из вальцов или даже оба вальца. При ведущем вибрационном вальце резко снижаются условные коэффициенты трения и сцепления его с поверхностью движения, что снижает силу тяги по сцеплению и затрудняет передвижение на уклонах.
Если вибровальцом является ведомый валец катка, то затрудняется управляемость катком. Другим существенным недостатком вибрационных катков является трудность создания надежной и долговечной защиты оператора от вредного воздействия вибрации. В значительной мере указанные недостатки устранены в вибрационных катках с двумя вибровальцами, которые работают в противоположных фазах и являются и ведущими и управляемыми. При проектировании виброкатков желательно обеспечивать изменение возмущающей силы для использования их в наиболее выгодных режимах работы при уплотнения различных материалов.




















































Определены основные параметры машины, такие как выбор основных параметров катка, такие как, вес катка, диаметр вальца,ширина вальца, баланс мощности . Был выбран гидромотор привода вибратора, соответствующий полученным значениям. Была проведена расчет амортизаторов. На основе полученных параметров сделан тяговый расчет.
Дата добавления: 31.03.2015
КП 443. Курсовой проект - Проектирование производства строительно-монтажных работ бетоносмесительного цеха | Компас

Конструкции пролета 1 и 2
Ширина 12 м, длина 108 м. Высота от уровня чистого пола до низа стропильных конструкций 11,4 м. Шаг колонн 6 м. Транспортное оборудование представлено мостовым краном грузоподъемностью 8 т. Фундаменты самостоятельные под каждую колонну монолитные железобетонные столбчатые с одноступенчатой плитной частью высотой 18 м. Обрез фундаментов располагается на отметке -0,150. Колонн сечением 600х400 массой 7 т. Подкрановые балки – БКНБ6-4 массой 4,15 т двутаврового сечения высотой 1400 мм. Железобетонные стропильные балки 1БДР 18-2П массой 8,5 т. Наружные стены навесные стальные 3-х слойные панели типа «Сендвич». Кровля из рулонных материалов. Заполнение отдельных проемов с интервалом через 0,6м. Ворота раздвижные двупольные.
Площадка строительства со спокойным рельефом, перепад высот в пределах площадки не превышает 1м. Грунт – II группы.
Конструкции пролета 3
Ширина 24 м, длина 108 м. Высота от уровня чистого пола до низа стропильных конструкций 11,4 м. Шаг колонн 12 м. Транспортное оборудование представлено мостовым краном грузоподъемностью 20 т. Фундаменты самостоятельные под каждую колонну монолитные железобетонные столбчатые с одноступенчатой плитной частью высотой 18 м. Обрез фундаментов располагается на отметке -0,150. Колонн сечением 600х400 массой 7 т. По торцевым стенам устанавливаются фахверковые колонны сечением 200х200 массой с шагом 6 м, которые опираются на отдельные самостоятельные фундаменты. Подкрановые балки – БКНБ6-4 массой 4,15 т двутаврового сечения высотой 1400 мм. Железобетонные стропильные балки 1БДР 18-2П массой 8,5 т. Наружные стены навесные стальные 3-х слойные панели типа «Сендвич». Кровля из рулонных материалов. Заполнение отдельных проемов с интервалом через 0,6м. Ворота раздвижные двупольные. Площадка строительства со спокойным рельефом, перепад высот в пределах площадки не превышает 1м. Грунт – II группы.

Содержание:
1. Исходные данные для проектирования
2. Составление сетевой модели
3. Карточка определитель сетевого графика
4. Расчет сетевого графика в табличной форме
5. Мероприятия по охране труда
6. Мероприятия по охране окружающей среды
7. Мероприятия по пожарной безопасности
8. Библиографический список
Дата добавления: 31.03.2015
КП 444. Курсовой проект - Рабочий чертеж стальной фермы покрытия здания | Компас

1. Задание и исходные данные для курсового проекта
2. Расчетная схема фермы
3. Сбор нагрузок на ферму
4. Определение усилий в элементах фермы
5. Конструирование и расчёт элементов ферм
6. Расчет сварных соединений в ферме
7. Расчёт опорного узла фермы
8. Расчет прокладок
9. Узлы стальной фермы покрытия
10. Библиографический список



Дата добавления: 31.03.2015
КП 445. Курсовая работа - Автоматизированное проектирование железобетонных и каменных конструкций 4-х этажного здания г. Братск | AutoCad

1. Задание для проектирования
2. Расчет монолитного варианта перекрытия
3. Расчет плиты с овальными пустотами
4. Расчет неразрезного ригеля
5. Расчет сборного железобетонной колонны и центрально-нагруженного фундамента под колонну
6. Расчет кирпичного столба с сетчатым армированием
7. Список литературы

Исходные данные для расчета монолитного ребристого перекрытия с балочными плитами:
шаг колонн в продольном направлении, м 6,00
шаг колонн в поперечном направлении, м 6,20
врем. нормат. нагр. на перекрытие, кН/м2 4,0
пост. нормат. нагр. от массы пола, кН/м2 0,9
класс бетона монол. констр. и фундамента В20
класс арматуры монол. констр. и фундамента A-II
влажность окружающей среды 90%
класс ответственности здания I

Исходные данные для расчета сборной плиты перекрытия:
шаг колонн в продольном направлении, м 6,00
врем. нормат. нагр. на перекрытие, кН/м2 4.0
пост. нормат. нагр. от массы пола, кН/м2 0,9
класс бетона для сборных конструкций В25
класс предв. напрягаемой арматуры ВР-11
способ натяжения арматуры на упоры Эл.терм.
условия твердения бетона Естеств.
тип плиты перекрытия "овал."
вид бетона для плиты тяжелый
влажность окружающей среды 90%
класс ответственности здания I

Исходные данные для расчета неразрезного ригеля:
шаг колонн в продольном направлении, м 6,00
шаг колонн в поперечном направлении, м 6,20
число пролетов в поперечном направлении 3
врем. нормат. нагр. на перекрытие, кН/м2 4,0
пост. нормат. нагр. от массы пола, кН/м2 0,9
класс бетона для сборных конструкций В25
класс арматуры сборных ненапр. конструкций А-III
тип плиты перекрытия "овал."
вид бетона для плиты тяжелый
влажность окружающей среды 90%
класс ответственности здания I

Исходные данные для расчета колонны и монолитного фундамента:
высота этажа, м 3,60
количество этажей 5
класс бетона монол. констр. и фундамента В20
класс арм-ры монол. констр. и фундамента А-II
глубина заложения фундамента, м 1.60
усл. расчетное сопротивление грунта, МПа 0,30
Дата добавления: 31.03.2015
КП 446. Курсовой проект - Газоснабжение района г. Вологда | AutoCad

I район – 8-ми этажные здания
II район -2 этажные здания
Город застройки - Вологда, расположен севернее 58° с.ш., в соответствии с СНиП 2.07.01-89* актуализированная редакция, Приложение 4,табл.2 примем плотность населения на территорию микрорайона, чел/га, для климатических подрайонов с зоной средней и низкой степени градостроительной ценности территории, соответственно 350 и 200 чел/га.
 


Fз, га


II район -2 этажные
Город застройки - Вологда, расположен севернее 58° с.ш.
В соответствии с СНиП 2.07.01-89* актуализированная редакция, Приложение 4,табл.2 примем плотность населения на территорию микрорайона, чел/га, для климатических подрайонов с зоной средней и низкой степени градостроительной ценности территории, соответственно 350 и 200 чел/га

В данном курсовом проекте была разработана и рассчитана система газоснабжения района города Вологда. Определены расходы газа бытовыми, жилищно-коммунальными и промышленными потребителями. Произведен гидравлический расчет сетей высокого и низкого давлений, подобраны диаметры газопроводов. Подобрано оборудование ГРП.
Также была разработана и рассчитана система газоснабжения жилого дома. Была принята к установке запорно-регулирующая арматура и подобраны диаметры газопроводов, сети низкого и высокого давления.
Дата добавления: 31.03.2015
РП 447. ППР на кирпичную кладку стен в зданиях с ненесущими стенами | AutoCad

1. ЛИСТ ОЗНАКОМЛЕНИЯ ПЕРСОНАЛА С ПРОЕКТОМ ПРОИЗВОДСТВА РАБОТ
2. ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ
3. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
4. ОХРАНА ТРУДА
5. ПРОМЫШЛЕННАЯ БЕЗОПАСНОСТЬ
6. ПОРЯДОК ПРОИЗВОДСТВА РАБОТ
7. ВЕДОМОСТЬ ИНСТРУМЕНТОВ
8. ПЕРЕЧЕНЬ ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

ГРАФИЧЕСКАЯ ЧАСТЬ:
СХЕМА ВЫНОСНОЙ ПЛОЩАДКИ

Место установки выносной площадки утверждает производитель работ или начальник строительного участка.
Схему выносной площадки см. графическую часть Лист 1.
Технические характеристики выносной площадки:
• грузоподъемность не более 800 кг;
• длина 6000 мм;
• ширина 1500 мм;
• высота 1740 мм.
Монтаж (подъем) подвесной площадки выполнять с применение башенного кра-на, задействованного на объекте.
Строповку выносной площадки осуществлять с применением стропа 4 СК-2,0.
До начала выполнения работ необходимо выполнить следующее мероприятия:
• собрать и испытать выносную приемную площадку;
• установить временное стоечное ограждение по периметру перекрытия и сигнальное ограждение опасной зоны в месте установки грузоприемной площадки.
После установки площадки, или ее переустановки на новое место, необходимо провести ее испытания.
При испытаниях площадки необходимо руководствоваться требованиями соответствующих разделов СНиП III-4-80* и СНиП 12-03-2001*. Площадку подвергнуть статическим испытаниям пробным грузом, вес которого на 20% превышает ее грузоподъемность (20% перегрузки) с выдержкой не менее 1 час.
После испытаний произвести визуальный осмотр площадки. Остаточные деформации в металлоконструкции несущего каркаса и в стойках распорных не допускаются. Также не допускаются трещины в сварных швах свариваемых деталей, повреждения настила и другие побочные дефекты.
Результаты испытаний площадки должны быть оформлены соответствующим актом испытаний.
Дата добавления: 02.04.2015
КП 448. Курсовой проект - Способы производства газобетонных стеновых панелей | AutoCad

Избыток массы («горбушку») после схватывания смеси (через 3-6 ч) срезают специальными струнами. Для ускорения газообразования, а также процессов схватывания и твердения применяют «горячие» смеси на подогретой воде с температурой в момент заливки в формы около 40°С.
Тепловую обработку ячеистого бетона производят преимущественно в автоклавах в среде насыщенного водяного пара при температуре 175-200°С и давлении 0,8-1,3МПа. Автоклавы представляют собой герметически закрывающиеся цилиндры диаметром до 3,6 м и длиной до 32 м. Во влажной среде и при повышенной температуре кремнеземистый компонент проявляет химическую активность и вступает в соединение с гидроокисью кальция с образованием гидросиликатов кальция, придающих ячеистому бетону повышенную прочность и морозостойкость.
Автоклавную об
работку производят по определенному режиму с учетом типа и массивности изделий. Чтобы не появились трещины в изделиях, предусматривают плавный подъем и спуск температуры и давления (в течение 2-6 ч); время выдержки изделий при максимальной температуре составляет 5-8 ч.
Неавтоклавные ячеистые бетоны, изготовленные по литьевой технологии и твердевшие в нормальных условиях или пропаренные при атмосферном давлении (при температуре 80-100°С), значительно уступают автоклавным бетонам по прочности и морозостойкости. Литьевая технология ячеистого бетона, основанная на применении текучих смесей с большим количеством воды, имеет ряд недостатков. Готовые изделия имеют большую влажность 25-30%, поэтому у них большая усадка, вызывающая появление трещин. Изделия получаются неоднородными по толщине (по высоте формы) вследствие расслоения жидкой смеси, всплывания газовых пузырьков. Производственный цикл удлиняется из-за медленного газовыделения и схватывания смеси. Новые технологические методы позволяют смягчить или полностью устранить эти недостатки.
Вибрационная технология газобетона заключается в том, что во время перемешивания в смесителе и вспучивания в форме смесь подвергают вибрации.
Тиксотропное разжижение, происходящее вследствие ослабления связей между частицами, позволяет уменьшить количество воды затворения на 25-30% без ухудшения удобоформуемости смеси. В смеси, подвергающейся вибрированию, ускоряется газовыделение- вспучивание заканчивается в течение 5-7 мин вместо 15-50 мин при литьевой технологии. После прекращения вибрирования газобетонная смесь быстро, через 0,5-1,5 ч, приобретает структурную прочность, позволяющую разрезать изделие на блоки, время автоклавной обработки также сокращается. Все это повышает производительность предприятий и снижает себестоимость изделий из ячеистого бетона. Разработаны новые технологические приемы изготовления ячеистого бетона из холодных смесей (с температурой около 20°С) с добавками поверхностно-активных веществ и малым количеством воды. Такой газобетон на цементе после обычного пропаривания при атмосферном давлении достигает прочности автоклавного бетона, изготовленного по литьевой технологии. Замена автоклавной обработки пропариванием без ущерба для качества ячеистого бетона дает большой экономический эффект, так как отказ от дорогостоящего и сложного автоклавного хозяйства удешевляет и упрощает изготовление изделий. Принципы вибрационной технологии разработаны советскими учеными.
Резательная технология изготовления изделий из ячеистого бетона предусматривает формование вначале большого массива (объемом 10-12 м3, высотой до 2 м). После того как бетон наберет структурную прочность, массив разрезают в горизонтальном и вертикальном направлениях на прямоугольные элементы, а затем подвергают тепловой обработке. Полученные элементы калибруют на специальной фрезерной машине и отделывают их фасадные поверхности.
Из готовых элементов, имеющих точные размеры, собирают на клею плоские или объемные конструкции, используя стяжную арматуру. Таким путем получают большие стеновые панели размером на одну или две комнаты и высотой на этаж.
Резательная технология дает возможность изготовлять с большой точностью легкие сборные конструкции полной заводской готовности, что повышает качество монтажных работ и темпы индустриального строительства.
Раствор получают из вяжущего (цемента или воздушной извести) кремнеземистого компонента и воды, как и в технологии газобетона. Пену приготовляют в лопастных пеновзбивателях и центробежных насосах из водного раствора пенообразователей, содержащих поверхностно-активные вещества либо при помощи пеногенераторов. Применяют гидролизованную кровь (ГК), клееканифольный, смолосапониновый, алюмосульфо-нафтеновый и синтетические пенообразователи. Пенообразование вызывается понижением поверхностного натяжения воды на поверхности раздела "вода-воздух" под влиянием поверхностно-активных веществ, адсорбирующихся на поверхности раздела. Качество пены тем выше, чем больше «кратность», представляющая отношение начального объема пены к объему водного раствора пенообразователя. Пена должна быть прочной и устойчивой, т. е. не осаживаться и не расслаиваться по крайней мере в начальный период схватывания ячеистой массы. Стабилизаторами пены служат добавки раствора животного клея, жидкого стекла или сернокислого железа; минерализаторами же являются цемент и известь. Пенобетонную смесь на цементе или извести можно изготовлять в смесителях периодического действия. В пеногенераторе приготовляется пена, в растворосмесителе готовится цементно-песчаный или известково-песчаный раствор и приготовленная пена смешивается с растворной смесью. Полученную ячеистую массу заливают в формы. Перед термообработкой отформованные пенобетонные изделия выдерживают до приобретения необходимой структурной прочности, тогда изделия не растрескиваются при перемещении форм и для них не опасно расширение воздуха, находящегося в ячейках-порах, происходящее при тепловой обработке. Для сокращения времени выдержки и ускорения оборачиваемости форм добавляют хлористый кальций, поташ и другие вещества, ускоряющие структурообразование.
Прочность и объемная масса являются главными показателями качества ячеистого бетона. Объемная масса косвенно характеризует пористость ячеистого бетона: увеличивая пористость с 60 до 83%, можно снизить объемную массу с 1000 до 400 кг/м3. Поэтому зависимость свойств бетона от объемной массы, представленная на графике, выражает, в сущности, влияние пористости. Возрастание объемной массы ячеистого бетона с 300 до 1200 кг/м3 сопровождается, как видно из графика, закономерным увеличением его прочности и теплопроводности.
Рассмотрев технологии производства газобетонных стеновых панелей, выбираю литьевую технологию.
Известь и песок предварительно поступают на дробление. Затем цемент и наполнители поступают на помол в шаровую мельницу. С помольного отделения поставляется сырье, и в нужной дозировке происходит смешивание в газобетономешалке песчаного шлама, воды, цемента, извести и алюминиевой пудры. Готовая смесь выгружается в формы, заполняя их примерно наполовину. Известь начинает гаситься, выделяя тепло, - за полтора часа температура смеси доходит до 80. Алюминий взаимодействует с известью, выделяется свободный водород, и он поднимает эту смесь, которая полностью заполняет форму. Цемент под воздействием высокой температуры начинает схватываться; сферические ячейки, образованные свободным водородом, превращаются в заполненные воздухом поры (готовый продукт на 80 проц. состоит из мелких пор диаметром от 1, 5 до 3 мм). Структурная пористость газобетонных блоков обусловлена строго выдержанной технологией, и автоматизацией процесса. После того, как массив поднимется, он подвергается предварительному твердению в течение 60-120 минут для достижения первоначальной прочности.
Далее идет комплектация массивов на автоклавных телегах и в путь, для дальнейшей пропарки. В этих автоклавах масса созревает на протяжении 12-15 часов. В автоклавах под большим давлением (от 8 до 14 атмосфер) и температурой (+170-1900 С) происходит реакция, при которой известь связывается с песком тонкомолотым, и газобетон становится прочным, обретая нужные качества. И полученный прочный, морозоустойчивый (в 4 раза теплее кирпича), экологически чистый продукт далее идет на склад. По своим эксплуатационным свойствам он находится на втором месте после дерева. Его можно пилить, штробить и даже забивать в него гвозди.
После автоклавной обработки готовые панели устанавливаются на поддоны и вывозятся на склад.
Дата добавления: 05.04.2015
КП 449. Курсовой проект - Определение влияния зеленых насаждений (микрорайонного сада) на условия проживания в микрорайоне | AutoCad

Введение
Предпроектный анализ
1. Влияние антропогенных факторов на территорию застройки микрорайона
1.1. Влияние шумового загрязнения на территорию микрорайона
1.2. Влияние концентрации угарного газа на территорию микрорайона
1.3. Анализ комплексного влияния антропогенных факторов на территорию застройки
2. Влияние антропогенных факторов на территорию микрорайонного сада
1.4. Влияние шумового загрязнения на территорию микрорайонного сада
1.5. Влияние концентрации угарного газа на территорию микрорайонного сада
1.6. Анализ комплексного влияния антропогенных факторов на территорию микрорайонного сада
3. Влияние ландшафтно-рекреационной зоны (микрорайонного сада) на территорию застройки Проектирование ландшафтно-рекреационной зоны (микрорайонного сада)
1.7. Функциональное зонирование территории микрорайонного сада
1.8. Построение дендроплана (разбивочный чертеж)

Предпроектный анализ Площадь микрорайона в пределах красной линии – 25 га;
Градостроительная ценность территории – средняя;
Плотность населения – 180 чел/га;
Климатический подрайон – III Б;
Норма жилищной обеспеченности – 20 м2/чел.
Транспортная сеть:
1 – улица местного значения:
- Интенсивность транспортного потока N – 757 экп/ч;
- Средневзвешенная скорость Vср = 23 км/ч;
- Эквивалентный уровень шума LАЭкв = 70 дБА;
- Концентрация оксида углерода СО = 12,34 мг/м3;
2 – улица районного значения:
- Интенсивность транспортного потока N – 1300экп/ч;
- Средневзвешенная скорость Vср = 22 км/ч;
- Эквивалентный уровень шума LАЭкв 72,5дБА; - Концентрация оксида углерода СО = 20,29 мг/м3;
3 – улица общегородского значения:
- Интенсивность транспортного потока N – 3120экп/ч;
- Средневзвешенная скорость Vср = 40 км/ч;
- Эквивалентный уровень шума LАЭкв = 79,5 дБА; - Концентрация оксида углерода СО = 23,65 мг/м3;
4 – улица общегородского значения:
- Интенсивность транспортного потока N – 3120 экп/ч;
- Средневзвешенная скорость Vср = 40 км/ч;
- Эквивалентный уровень шума LАЭкв = 79,5 дБА;
- Концентрация оксида углерода СО = 23,65 мг/м3;
Микрорайонный сад – это озелененный участок внутри микрорайона предназначенный для повседневного пользования и должен располагаться в пределах пешеходной доступности = 500 м.
Микрорайонный сад отличается от других сегментов озеленения города тем, что он органично вклинивается в архитектурно-планировочную структуру микрорайона. Стилистически должен полностью гармонировать с территорией микрорайона.
 
Дата добавления: 06.04.2015
РП 450. ЭМ Реконструкция ВРУ главного корпуса детской психоневрологической больницы | AutoCad

Организация учета электроэнергии для проектируемого ВРУ предусматривается организовать во вводных панелях 1 и 2 (ВП-1 и ВП-2), и выполнить его трехфазным, трансформаторного включения, с узлами учета электроэнергии типа Меркурий 230 ART-03 CN 380/220 В, 5-7,5А. Проектом учено выполнение разделов:
-щитовое оборудование и распределительные щиты в соответствии с требованиями СП 31-110-2003, Разделов 1, 3, 4 и 7 ПУЭ (издание 7), ГОСТ Р 51778, ГОСТ Р 51732-01, ГОСТ Р 50509-93, а так же требований СНиП 41-01-2003 и ОЛХ.684.011-86;
-технический учет потребляемой электрической мощности в соответствии с требованиями СП 31-110-2003, главы 1.5. ПУЭ (издание 7). В качестве расчетного прибора принять счетчик Меркурий 230;
-рабоче-защитного заземления и системы дополнительного уравнивания потенциалов системы TN-C-S в соответствии с требованиями главы 1.7 ПУЭ (издание 7).

Общие данные.
Принципиальная однолинейная электрическая схема ВП-1 и ВП-2.
Принципиальная однолинейная электрическая схема РП-1.
Принципиальная однолинейная электрическая схема РП-2.
Схема компоновки панелей ВРУ.
Схема компоновки шкафов РП-1 и РП-2.
Дата добавления: 06.04.2015


© Rundex 1.2
 
Cloudim - онлайн консультант для сайта бесплатно.