Добавить проект
Прочитать правила
Платный доступ
Авторизация:
Информация


%20%20%20

Найдено совпадений - 4474 за 0.00 сек.


КП 2281. Курсовой проект - Компоновка рабочего оборудования вилочного погрузчика г/п 2150 кг | Компас
Введение 4
1. Выбор аналога рассчитываемого погрузчика 5
2. Расчет грузоподъемника вилочного погрузчика 10
3. Расчет механизма подъема 10
4. Расчет механизма наклона грузоподъемника 19
5. Тяговый расчет погрузчика 24
6. Определение мощности и построение внешней скоростной характеристики двигателя 24
7. Определение основных параметров трансмиссии 28
8. Расчет динамической тяговой характеристики погрузчика 30
9. Расчет устойчивости автопогрузчика 36
10. Список используемых источников 44
Заключение .45

Выбираем аналог вилочного погрузчика грузоподъемностью 2150 кг , высотой подъема груза не более 4 м, двигателем внутреннего сгорания, количеством ходовых опор – 4 шт
Погрузчик DFG 320 фирмы Jungheinrich оснащен гидродинамической трансмиссией (гидромеханической коробкой передач), которая обеспечивают высокую производительность при транспортировке грузов на средние и длинные дистанции. В полной мере реализованы преимущества трансмиссии такого типа: мягкое и плавное трогание с места, динамичное ускорение на средних и высоких скоростях. Комфортабельное, безопасное и эргономичное рабочее место оператора.

Заключение
В курсовой работе был подобран и рассчитан вилочный погрузчик Jungheinrich DFG 320 . Для него были подобраны гидроцилиндр наклона Ц20-55-35-374 и плунжерный гидроцилиндр ПЦ20-50-45-1450.
Была определена максимальная мощность двигателя, она равна 43 л. с. В ходе расчета на устойчивость выяснилось, что в трех рассмотренных случаях погрузчик устойчив; в четвертом случае был определен максимальный угол наклона площадки при котором погрузчик устойчив α=7°.
Дата добавления: 16.06.2019
РП 2282. ПБ Строительство торгового центра "ГРАНД" | AutoCad

Для контроля за шлейфами сигнализации принято два приемно-контрольных прибора "Сигнал-20М". Приборы устанавливаются в блоке А в подвале и на лестничной клетке 4 этажа.
Управление и контроль за приемно-контрольными приборами осуществляется с пульта контроля и управления С-2000М.
Для дистанционного пуска установки пожаротушения, в непосредственной близости от прибора управления, в электрощитовой на стене на высоте 1,5м от уровня пола монтируется шкаф дистанционного управления ШУС.
Для исключения самопроизвольного потока жидкости в системе сплинкерного пожаротушения от датчиков потока жидкости на прибор контроля модульной пожарной насосной установки ШУК выдается сигнал о неисправности в системе.
Запуск и останов средств пожаротушения возможен в дистанционном режиме по команде ШУС от «С2000-ПТ», «С2000М», установленных в блоке А. Ручной запуск средств пожаротушения может быть выполнен от шкафов ШУК и ШУС.
Проектом предусмотрена обратная связь зон пожарного оповещения с пожарного поста, который находится в Блоке А на 1 этаже, рядом с электрощитовой. Связь выполнена на основе комплекса технических средств «Рупор-Диспетчер».


Общие данные.
Структурная схема. Блоки А, Б. 1, 2, 3 этажи и подвал.
Структурная схема. 4 этаж
Схема подключений
Схема подключений Сигнал 20М, Рупор ДБ
Структурная схема оповещения о пожаре. Схема подключений. Блок А
Структурная схема оповещения о пожаре. Схема подключений. Блок Б
План расположения сетей пожарной сигнализации. Подвал Блок А
План расположения сетей пожарной сигнализации. 1 этаж Блок А
План расположения сетей пожарной сигнализации. 2 этаж Блок А
План расположения сетей пожарной сигнализации. 3 этаж Блок А
План расположения сетей пожарной сигнализации. Подвал. Блок Б
План расположения сетей пожарной сигнализации. 1 этаж Блок Б
План расположения сетей пожарной сигнализации. 2 этаж Блок Б
План расположения сетей пожарной сигнализации. 3 этаж Блок Б
План расположения сетей пожарной сигнализации. 4 этаж Блок А
План расположения сетей пожарной сигнализации. 4 этаж Блок Б
План расположения сетей. Чердак Блок А
План расположения сетей. Чердак Блок Б
План расположения сетей оповещения о пожаре. Подвал Блок А
План расположения сетей оповещения о пожаре. 1 этаж Блок А
План расположения сетей оповещения о пожаре. 2 этаж Блок А
План расположения сетей оповещения о пожаре. 3 этаж Блок А
План расположения сетей оповещения о пожаре. План располо жения оборудования пожаротушения. 4 этаж Блок А
План расположения сетей оповещения о пожаре. Подвал Блок Б
План расположения сетей оповещения о пожаре. 1 этаж Блок Б
План расположения сетей оповещения о пожаре. 2 этаж Блок Б
План расположения сетей оповещения о пожаре. 3 этаж Блок Б
План расположения сетей оповещения о пожаре. План располо жения оборудования пожаротушения. 4 этаж Блок Б
Дата добавления: 17.06.2019
КП 2283. Курсовой проект (колледж) - Цех по выпуску хлебопродуктов 26,4 х 12,0 в г. Воронеж | Компас

2. Ведомость чертежей
3. Исходные данные.
4. Архитектурно-строительная часть
4.1 Объемно-планировочное решение
4.2 Конструктивное решение
4.3 Наружная и внутренняя отделка.
4.4 Инженерное оборудование
4.5 Охрана окружающей среды
4.6. Мероприятия по обеспечению пожарной безопасности
4.7 Мероприятия по обеспечению соблюдения требований энергетической эффективности
4.8 Приложения:
4.8.1 Спецификация сборных элементов
4.9 Экономическая эффективность
Заключение.
Список использованных источников


Привязка колонн центральная. Пространственная жесткость достигается устройством:
1. Многоярусной рамы, образованной пространственным сочетанием колонн, ригелей, перекрытий.
2. Стенками - диафрагмами жесткости
3. Плитами-распорками (связевыми плитами)
4. Надежным сопряжением элементов в узлах каркаса
Основные элементы здания приняты в следующих конструкциях:
Фундаменты: под колонны сборные железобетонные (фундамент-башмак) по серии 1.020-1/87 Выпуск I-I глубиной заложения 1,25 м.
Колонны железобетонные стыковые одно- и двухконсольные по серии 1.020-1/87, Выпуск 2-1 сечением 400х400 на высоту этажа 3,6м.
Ригели железобетонные по серии 1.020-1/87, Выпуск 3-7 длиной 5600мм, 6800мм и 2600мм и высотой 450. (однополочные, двухполочные, связевые и лестничные)
Плиты перекрытия железобетонные многопустотные длиной 5600мм, 2700мм по серии 1.041.1-2. Стеновые панели (рядовые, простеночные и угловые) толщиной 300мм по серии 1.030.1-1 и стены кирпичные толщиной 510мм.
Лестницы: сборные железобетонные с полуплощадками по серии 1.050.1-2, ограждение лестниц металлическое с поручнями из профилированного поливинилхлорида
Диафрагмы жесткости применяются для обеспечения жесткости здания, устанавливаются на всю высоту здания поэтажно по серии 1.020-1/870-1., опираются на отдельный монолитный фундамент
Цокольные балки по серии 1.030.1-1.Выпуск 1-1 длиной 3 и 6 м.
Кровля: 2-слойный водоизоляционный ковер (Техноэласт марки ЭКП, Техноэласт марки ЭПП) по праймеру и цементно- песчаной стяжке, с утеплителем (ISOVER) и пароизоляцией (Линкром марки ТПП) по ж/б плите.
Дата добавления: 17.06.2019
КП 2284. Курсовой проект - Проектирование городской улицы в г. Белгород | АutoCad

ВВЕДЕНИЕ 2
1 Общая характеристика района проектирования дороги 3
1.1 Климатические характеристика района проектирования 3
1.2 Рельеф местности 5
2 Обоснование технических нормативов проектируемой автомобильной дороги 5
3 Определение технических характеристик проектируемых улиц 7
4 Проектирование поперечных профилей основной и пересекаемой улиц, определении ширины улиц в "красных линиях" 13
5 Проектирование плана и продольного профиля основной и пересекаемой улиц 14
5.1 Проектирование плана улиц 14
5.2 Проектирование продольного профиля улиц 15
6 Разработка вертикальной планировки пересечения 17
7 Определение объёмов земляных работ на перекрёстке методом "картограмм" 19
8 Назначение конструкции дорожной одежды 24
ЗАКЛЮЧЕНИЕ 35
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ 36

Исходные данные для проектирования
1. Топографический план участка города в горизонталях с планом улично-дорожной сети в масштабе 1:10 000 (приложение 1).
2. Район проектирование – г. Белгород, Белгородская область.
3. Данные о грунтовых условиях:




6. Основная улица Прохладная.
7. Пересекаемая улица Ненастная.
8. Состав транспортного потока и интенсивность движения:








10. Интенсивность движения пешеходов 3,0 тыс. чел/ч.
11. Инженерные сети: водопровод, теплоснабжение, кабели (слаботочные, сильных токов, осветительные).
12. Тип покрытия дорожной одежды проезжей части проектируемой улицы монолитный цементобетон.

ЗАКЛЮЧЕНИЕ
В данной курсовой работе на тему «Проектирование городской улицы» была запроектирована магистральная улица непрерывного движения.
Был выбран оптимальное размещение автомобильной дороги исходя безопасности движения и экономического соображения, запроектирована вертикальная планировка и выполнен расчет объема земляного полотна методом картограмм. Была подобрана конструкция жесткой дорожной одежды с учетом сроком службы на 25 лет.
Дата добавления: 17.06.2019
КП 2285. Курсовой проект - Расчет принудительного бетоносмесителя СБ-93 | AutoCad

Введение 3
1 Литературный обзор 4
2 Описание конструкции и работы машины 7
3 Расчетная часть 8
3.1 Расчет геометрических параметров бетоносмесителя 8
3.2 Кинематический расчет бетоносмесителя 13
3.3 Расчет привода бетоносмесителя 14
3.4 Расчет производительности смесителя 15
3.5 Расчет держателей лопастей и предохранительных устройств 16
3.6 Определение параметров загрузочных устройств 18
3.7 Определение параметров разгрузочного затвора 20
4 Техника безопасности 23
5 Экология 26
5.1 Характеристика предприятий как источника загрязнений
окружающей среды 26
5.2 Методы защиты атмосферы от загрязнений 27
Заключение 28
Библиографический список 30


1) Вместимость смесителя по загрузке , 1500л;
2) Число смесителя лопастей - 9;
3) Вид смеси – бетон;
4) Вид крупного заполнителя – шлак;
5) В/Ц - 0,35;
6) Осадка конуса – 4см.



ЗАКЛЮЧЕНИЕ
В результате проделанной работы для производства бетонных растворов была выбрана бетоносмесительная машина СБ-93 благодаря своим конструктивным особенностям, габаритным размерам машины, а также низкой цене по сравнению с другими машинами данного класса.



Дата добавления: 18.06.2019
КП 2286. Курсовой проект - Обрубный цех 96 х 60 м в г. Ульяновск | AutoCad

1. Исходные данные 2
2. План благоустройства территории 3
3. Краткое описание технологического процесса 4
4. Объемно-планировочное решение 5
5. Конструктивные решения
5.1 Фундаменты 6
5.2 Стены 7
5.3 Колонны 8
5.4 Покрытие 9
5.5 Кровля 11
5.6 Окна и двери 11
5.7 Полы 12
6. Инженерное оборудование 12
7. Технико-экономические показатели 12
8. Противопожарная безопасность 13
9. Список используемой литературы 14

Здание обрубного цеха одноэтажное. Размер в осях 96х60 м, прямоугольной конфигурации в плане. Конструктивная схема здания с несущим каркасом и ненесущими навесными панельными стенами. Фундамент под стены из сборных ж/б фундаментных балок, под колонны – отдельностоящие железобетонные фундаменты стаканного типа, покрытие из сборных ж/б ребристых плит по стропильным железобетонным фермам. Колонны каркаса сборные железобетонные, прямоугольного сечения. Сетка колонн 6х18 м и 6х24 м в средней части цеха.
В каждом пролете здания цеха предусмотрены мостовые краны грузоподъемностью 10 и 20 т. Подкрановые балки железобетонные, таврового сечения. Ограждающие конструкции наружных стен выполнены из железобетонных стеновых панелей, отдельные участки – из силикатного кирпича. Кровля плоская совмещенная, с внутренним водоотводом. Высота помещения цеха 14,25 м.
В поперечном направлении устойчивость здания обеспечивается жесткостью заделанных в фундамент колонн и жестким диском покрытия, в продольном направлении – стальными крестовыми связями, установленными между колоннами.
Равномерность и достаточный уровень освещенности обеспечивается боковым и верхним естественным освещением.
Здание административно-бытового комплекса пристроено к продольной стене обрубного цеха. Размеры АБК в осях 63,4х9,02 м. Стены административно-бытового комплекса кирпичные, толщиной 510 мм. Покрытие из железобетонных пустотных плит. Кровля совмещенная, с внутренним организованным водоотводом. В здании АБК располагаются гардеробные, уборные, душевые рабочих, кабинеты мастера, начальника цеха, бухгалтерия.


Под стены административно-бытового комплекса фундаменты запроектированы ленточные, из сборных ж/б плит и ж/б блоков.
В здании обрубного цеха стены ненесущие, из сборных железобетонных стеновых панелей по серии 1.432-5. Стеновые панели крепятся сваркой закладных элементов к основным и фахверковым колоннам каркаса.
В пристроенном здании административно-бытового комплекса стены несущие, из силикатного кирпича. Наружные стены толщиной 510 мм, внутренние – 380 мм, перегородки из силикатного и керамического кирпича толщиной 120 мм.
В здании обрубного цеха запроектированы сборные железобетонные колонны прямоугольного сечения по серии 1.424.1-5.
Покрытие обрубного цеха выполнено из сборных железобетонных ребристых плит по серии 1.465.1-21.94, уложенным по стропильным железобетонным фермам по серии 1.463.1-3/87.
В административно-бытовом комплексе покрытие выполнено из сборных железобетонных пустотных плит по серии 1.141-1 по несущим наружным и внутренним стенам.
Крыша совмещенная невентилируемая с внутренним водостоком.

Технико-экономические показатели
Площадь территории – 30000 м2;
Площадь застройки – 6330 м2;
Строительный объем – 97901 м3;
Площадь озеленения – 20762 м2;
Площадь тротуаров и дорог – 1908 м2.
Дата добавления: 18.06.2019
КП 2287. Курсовой проект - Проектирование цеха по производству плит перлитокерамических 2П-250.60 | AutoCad

Введение 3
1 Технологическая часть 5
1.1. Характеристика и номенклатура продукции 5
1.2. Выбор, обоснование и описание принятой схемы технологического процесса. 5
1.3 Режим работы и производственная программа предприятия 12
1.4 Характеристика исходного сырья. Расчет потребности в сырьевых материалах 13
1.5. Выбор и расчет количества основного технологического оборудования. Расчет производится в порядке, предусмотренном технологической схемой. 15
1.6 Расход электроэнергии 17
1.7. Контроль производства и качества готовой продукции 17
1.8. Техника безопасности и охраны труда. 20
Список используемой литературы 23





• плотность 250 кг/м3,
• предел прочности при сжатии не менее 0,4 МПа,
• линейная температурная усадка при 875°С не более 2%,
• влажность не более - 1,5%,
• теплопроводность при 200°С не более - 0,065-0,105 Вт/м-°С.
• Термическая стойкость – 10 циклов
Отклонение от плоскостности опорных поверхностей испытуемых образцов не должно превышать 0,5 мм.
В изломе изделия должны иметь однородную структуру, без пустот, посторонних включений, расслоений и трещин.
В изделиях не допускаются:
а) Отбитости и притупленности углов и ребер длиной более 25 мм. и глубиной более 7 мм.
б) Трещины глубиной более одной четверти толщины изделий
в) Искривление плоскости и ребер более 3 мм.
Дата добавления: 18.06.2019
КП 2288. Курсовой проект - Бетоносмесительный цех по производству лестничных маршей производительностью 76 900 м3/год | AutoCad

ВВЕДЕНИЕ 3
Основные характеристики изделия 5
1.1 Основные требования к изделию 5
1.2 Характеристика изделия 6
2 Характеристика сырья и полуфабрикатов 7
2.1 Требования к бетонной смеси 7
2.1.1 Вяжущие вещества 7
2.1.2 Крупный заполнитель 8
2.1.3 Мелкий заполнитель 8
2.1.4 Вода 9
2.1.5 Добавка 10
2.2 Арматура 11
3 Подбор состава бетонной смеси 12
3.1 Исходные данные 12
3.2 Лабораторный состав 13
3.3 Производственный состав бетона 15
4 Основные расчеты производственного цеха 17
4.1 Режим работы предприятия 17
4.2 Производственная программа 17
4.3 Подбор склада сырьевых материалов 18
4.3.1 Подбор силосов для хранения цемента 18
4.3.2 Расчет складов заполнителей 20
4.4 Подбор расходных бункеров 21
4.5 Подбор основного технологического оборудования 23
4.5.1 Подбор бетоносмесителя 24
4.5.2 Подбор дозаторов 26
5 Охрана труда 28
Заключение 31
 



Исходные данные
1.Бетонная смесь: БСТ В22,5 П2 F200 W4
2. Вяжущее вещество:
ЦЕМ II – А/Ш 32,5 Б ГОСТ 31108, R= 38,2 МПа, ист = 3,15 г/см3,нас = 1200 кг/м3
3.Крупный заполнитель:
Щебень гранитный фракции 20 – 40 мм, НКЗ = 40 мм, ист =2660 кг/м3,нас =1500 кг/м3
4. Мелкий заполнитель:
Песок полевошпатовый Мк=2,3, ист =2400 кг/м3,нас =1350 кг/м3
5. Добавка:
Нитрат кальция- замедлитель коррозийных процессов, быстрый набор прочности, устойчивость к трещинообразованию.
Расход = 0,5 – 1% от массы цемента
Водоредуцирующий эффект – от 7 до 20%

ЗАКЛЮЧЕНИЕ
В ходе выполнения курсового проекта на тему «Бетоносмесительный цех по производству лестничных маршей производительностью 76 900 м3/год» был запроектирован бетоносмесительный цех производительностью 76900 м3/год с расчетом производственного состава бетона, емкости силосов цемента, складов заполнителей, расходных бункеров; были подобраны дозаторы воды и добавки, цемента, заполнителей и бетоносмеситель, обеспечивающий заданную производительность бетонной смеси.
Как результат проведенной работы представлен чертеж линии по приготовлению бетонной смеси для производства лестничных маршей, на котором изображена компоновочная схема бетоносмесительной установки, в плане, что соответствует партерной схеме производства бетонной смеси, а также изображены силосы для цемента и склад заполнителей, расчет которых произведен в курсовом проекте.
Дата добавления: 18.06.2019
РП 2289. ТХ Цех розлива растительного масла в ПЭТ бутылки | AutoCad

- Упаковочная тара - картонная коробка 400х500х300мм (ГОСТ 34033-2016 Упаковка из картона и комбинированных материалов для пищевой промышленности);
- стрейч-пленка должна соответствовать техническим условиям распространяются на пленку для упаковки пищевых продуктов (ТУ 2245-001-…);
- деревянные паллеты ГОСТ 33757-2016 П.
Вид тары:
- бутылка ПЭТ 1 л (ГОСТ 32686-2014 Бутылки из полиэтилентерефталата для пищевых жидкостей).
Общий объем продукции - 276 т/сутки;
Температурный режим производственного цеха: +15°...+21°C;
Температурный режим склада готовой продукции: +18°C;
Температурный режим склада тары: +18°C;
Подача масла на розлив- трубопровод.
Загрузка продукции в склад - вилочный электрический погрузчик.
Загрузка упаковочных материалов - вилочный электрический погрузчик.
Выгрузка продукции из склада - 3 разгрузочных ворот, вилочным электрическим погрузчиком на автотранспорт.
Системы и методы хранения - паллетные стеллажи.
Хранение - укомплектованные паллеты на стеллажах

Состав линии розлива растительного масла:
1. Ленточный пневматический транспортер
2. Выдув ПЭТ тары
3. Розлив и укупоривание бутылок
4. Нанесения этикеток и маркировка
5. Конвейерная система транспортировки наполненных и закупоренных бутылок
6. Упаковка в коробки
7. Конвейерная система транспортировки коробок с маслом
8. Укладка на паллеты
9. Обмотка стрейч-пленкой коробок на паллетах
10. Отгрузка паллет с готовой продукцией.

Линия розлива предназначена для автоматического розлива растительного масла в ПЭТ-бутылки, объемом -1.0 л. Розлив растительного масла осуществляется по объему. Точность дозирования составляет - 0.5%.
Оборудование состоит из ряда машин, которые связывает пневматический транспортер (поз.02) для перемещения ПЭТ-бутылок из зоны формовки в зону заполнения автоматического укупоривания их пластмассовыми резьбовыми пробками,далее в зону - наклеивания этикеток и маркировки, далее в зону укладки в коробки, далее в зону укладки на поддоны.
Система модульного типа гарантирует, что в процессе транспортировки всегда будет оставаться хороший запас бутылок для эффективной эксплуатации установки.
Скорость продвижения бутылок определяется воздушным потоком, который создается вентиляторами, втягивающими воздух в раструбы конвейеров, где перемещается бутылка, которая удерживается за горлышко.

Общие данные.
План этажа на отметке 0.000 с расстановкой технологического оборудования.
Схема подводки сжатого воздуха и охлажденной воды к выдувной машине
Узел блокировки бутылок
Узел опорной подставки (каркас транспортера)
Узел воздуходувки
Узел плиты выталкивателя
Узлы направляющих бутылок и горлышек бутылок
Дата добавления: 19.06.2019
КП 2290. Курсовой проект - Очистные сооружения водопровода | AutoCad

Основные задачи курсового проекта:
1. Определение качества исходной воды и отнесение ее к той или иной категории по загрязненности: маломутная, малоцветная или др.
2. Выбор способа химической обработки: коагулирование, фторирование и т.п.
3. Определение часовой производительности станции очистки с учетом собственных нужд и числа часов ее работы в сутки.
4. Выбор основных технологических сооружений и составление принципиальной технологической схемы обработки воды.
5. Расчет требуемых доз реагентов, определение последовательности ввода реагентов в воду и интервалов времени между введением отдельных реагентов.
6. Расчет основных элементов технологической схемы.
7. Компоновка станции.
8. Расчет высотной схемы с определением всех уровней.


Цель курсового работы… 4
1. Выбор метода обработки воды 5
2. Производительность и состав очистных сооружений 8
3. Дозы и последовательность ввода реагента 9
4. Расчет основных элементов технологической схемы 11
4.1 Барабанные сетки 11
4.2 Коридорный смеситель 12
4.3 Вертикальный отстойник 14
4.4 Скорый фильтр 16
4.4.1 Общие требования и расчет скорого фильтр 16
4.4.2 Распределительная система и трубопроводы 20
4.4.3 Промывка скорого фильтра
4.4.4 Обработка промывных вод 22
4.4.5 Удаление солей жесткости 25
5. Реагентное хозяйство 26
5.1 Хлорирование воды 28
5.2 Электролизная установка. 29
6. Компоновка водоочистной станции 32
7. Расчет высотной схемы 33
Заключение 35
Библиографический список

Заключение
Для очистной станции пропускной способностью 46020 м3/сут на основе состава и свойств воды источника применяются следующие методы обработки: коагулирование , хлорирование . Этим методам обработки соответствует схема с вертикальным отстойником со встроенной камерой хлопьеобразования.
Для ускорения процесса осветления в воду вводят коагулянт, в качестве которого используем оксихлорид алюминия («АКВА-АУРАТ 18») Al2(ОН)3Cl3 в количестве 6 мг/л.
Установлены две барабанные сетки (1 рабочая 1 резервная) марки БСБ3х3,7Ц с производительностью 2130 м3/ч. Выбрали два коридорных смесителя (1 рабочий и 1 резервный) имеющими ширину коридора В = 1,25 м и длину одного хода (коридора) l = 10 м, диаметр подводящего патрубка dвн = 1000 мм.
Принимаем 26 камеру хлопьеобразования со слоем взвешенного осадка, по одной в каждом вертикальном отстойнике.
Количество вертикальных отстойников 3.
На станции предусмотрено 12 скорых фильтров с одно-слойной загрузкой кварцевым песком, длиной lф=6 м и Нстр=2,87 м. Для равномерного распределения промывной воды по площади фильтра и для сбора профильтрованной воды установлено 40 дырчатых труб, потери напора составляют 0,45 м.
Для очистки промывных вод используем ленточный вакуум-фильтр с намывным слоем осадка.
Для удаления солей жесткости принимаем 2 ионных фильтра марки РИФ-1, производительностью 1000м3/час, высотой 1200мм, длиной 1340мм,глубиной 750мм,площадью фильтровальной поверхности 6 м2.
В данной курсовой работе в качестве хлорсодержащего препарата принимаем гипохлорит натрия. Электролизная установка для его получения УЭ ГПХН – 4200Сэ. Массовая доля хлора 7-9 мг/л, длина 1400мм, ширина 700мм, высота 1500мм, масса не более 700кг.
Дата добавления: 21.06.2019
РП 2291. ПБ Горно-обогатительный комбинат по добыче и обогащению калийных солей мощностью 2,3 млн. т/год в Волгоградской области | AutoCad

Структура системы
В состав системы входит оборудование, которое по выполняемым функциям можно сгруп-пировать:
Группа 1:
- Программно-аппаратный комплекс на базе ЭВМ с программным обеспечением (в здании станционном (только мониторинг);
- Пульты контроля и управления «С-2000-М»;
- Повторители/ преобразователи интерфейса RS-485/232 «С-2000-ПИ»;
- Преобразователь интерфейса RS-485/232 в Ethernet «С-2000-Ehernet»;
- Сетевые коммутаторы (учтены в разделе «устройства связи).
Группа 2:
- Приборы приемно-контрольные и управления «С-2000-АСПТ»;
- Блоки контроля и индикации «С-2000-БКИ»;
- Блоки индикации «С-2000-БИ»;
- Блоки индикации и управления пожаротушением «С-2000-ПТ»
- Блоки сигнально-пусковые «С-2000-СП1 исп.1»;
- Блоки реле адресные «С-2000-СП2»;
- Блоки сигнально-пусковые адресные «С-2000-СП4/220»;
- Контрольно-пусковые блоки «С-2000-КПБ».
Группа 3:
- Контроллеры двухпроводной линии связи «С-2000-КДЛ».
Первая группа предназначена для построения верхнего уровня интерфейса управления сложной распределённой системой, использующей древовидную топологию интерфейса. Головным устройством станционного оборудования является пульт контроля и управления «С-2000-М» предусмотренные на каждом объекте. На посту с круглосуточным пребыванием обслуживающего персонала в станционном здании пом.226 проектом предусматривается вывод тревожных сигна-лов на пульт контроля и управления «С-2000-М» - «главный пульт мониторинга» (существую-щий), на который поступает информация о состоянии установок автоматической пожарной сигнализации каждого из объектов. Связь с постом охраны организованна следующим образом - при наступлении опасного фактора пожара на объекте приемно-контрольное оборудование регистрирует данное событие, и по магистрали RS-485 передает тревожные сигналы на объ-ектовые пульты контроля и управления «С-2000-М», с помощью преобразователей интерфейса RS-485/232 в Ethernet «С-2000-Ehernet», используя локально-вычислительную сеть (см.ххх), сигналы «пожар» и «неисправность» при помощи блоков сигнально-пусковых «С-2000-СП1 исп.1». Блоки индикации «С-2000-БИ» на посту охраны отображают состояние объектовых установок пожарной сигнализации. На посту охраны предусмотрен программно-аппаратный комплекс на базе ЭВМ с программным обеспечением «Орион-ПРО», также позволяющий выполнять монито-ринг состояния систем;
Вторая группа приборов предназначена для обеспечения функций управления, отобра-жения состояния разделов системы, управления исполнительными устройствами. Устройства этой группы не обладают возможностью автономной работы и предназначены для функциони-рования только в составе системы под управлением пульта контроля и управления «С-2000-М».
К третьей группе относятся приборы, имеющие кольцевые шлейфы сигнализации и предусмотренные на каждом объекте, оснащенном системой пожарной сигнализации в соответ-ствии с Техническими требованиями.
Максимальное количество адресных устройств, включенных в линию ДПЛС принято с уче-том 10% резерва емкости адресного пространства контроллера, т.е. не превышает 113 адресов.
Для управления исполнительными устройствами при пожаре проектом предусматриваются:
- Блоки сигнально-пусковые «С-2000-СП1 исп.1»;
- Блоки реле адресные «С-2000-СП2»;
- Контрольно-пусковые блоки «С-2000-КПБ».
В качестве извещателей автоматической пожарной сигнализации используются:
- извещатель пожарный дымовой адресный "ДИП-34А-03";
- извещатель пожарный тепловой адресный "С-2000-ИП-03
- извещатель пожарный пламени адресный "C-2000-Спектрон-607";
- извещатель пожарный ручной адресный "ИПР 513-3АM исп.01";
- извещатель пожарный ручной адресный "C-2000-Спектрон-512-Ex-M-ИПР";
- кнопка ручного пуска системы пожаротушения адресная «ЭДУ 513-3АM»;
- извещатель охранный магнито-контактный адресный "С-2000-АР1 с ИО 102-20";
- извещатель охранный магнито-контактный "ИО102-32 «ПОЛЮС-2»".
В соответствии с п. 14.2 СП 5.13130.2009 в защищаемых помещениях предусмотрена уста-новка не менее двух автоматических пожарных извещателей. Точное количество автоматиче-ских пожарных извещателей определено исходя из необходимости обнаружения загораний на контролируемой площади помещений (зон контроля) и средней площади, контролируемой одним извещателем, с учетом архитектурных особенностей помещений.
Выбор типов пожарных извещателей в зависимости от назначения защищаемого помеще-ния и вида пожарной нагрузки производится согласно таблицы М.1 Приложения М СП 5.13130.2009
В помещениях расстояние между точечными дымовыми извещателями принято на основа-нии п. 13.4 по таблице 13.3 СП 5.13130.2009.
Расстояние между точечными тепловыми извещателями принято на основании п. 13.6 по таблице 13.5 СП 5.13130.2009.
Расстояние для извещателей пламени принято на основании п. 13.8 СП 5.13130.2009.
Расстояние между автоматическими извещателями в помещениях, где предусматривается запуск установки автоматического пожаротушения от сигнала формируемым АПС, принято с учетом требований п. 14.1 СП 5.13130.2009.
Оборудование пространства над подвесными потолками пожарными извещателями обу-словлено требованием п.11.2 СП 5.13130.2009 (Приложение А).
В проекте предусмотрена установка ручных пожарных извещателей «ИПР 513-3АМ исп.01», со встроенным разветвительно-изолирующим блоком (БРИЗ) на лестничных клетках и выходах из помещений на высоте 1.5м. от уровня пола. Расстояние между ручными извещателя-ми не превышает 50 м по каждому направлению эвакуации. Снаружи здания предусмотрена установка извещателей ручных пожарных адресных "C-2000-Спектрон-512-Ex-M-ИПР";
Ручные пожарные извещатели установлены в местах, удалённых от электромагнитов, постоянных магнитов, и других устройств, воздействие которых может вызвать самопроиз-вольное срабатывание ручного пожарного извещателя.
Блок разветвительно-изолирующий "БРИЗ" предназначен для использования в двухпро-водной линии связи контроллера "С-2000-КДЛ" с целью изолирования короткозамкнутых участ-ков с последующим автоматическим восстановлением после снятия короткого замыкания.
Адресно-аналоговые пожарные извещатели ДИП-34А-03, С-2000-ИП-03, ИПР 513-3АМ исп.01, ЭДУ 513-3АM, C-2000-Спектрон-512-Ex-M-ИПР, С-2000-АР1 с ИО 102-20, блоки разветви-тельно-изолирующие "БРИЗ", , блоки реле адресные «С-2000-СП2» подключаются с помощью двухпроводной линии связи к контроллеру ДПЛС «С-2000-КДЛ».
Кабельные линии системы противопожарной защиты выполняется по ГОСТ Р МЭК 60332-3-22 с низким дымо- и газовыделением (нг-FRHF) различного сечения.
Дата добавления: 21.06.2019
КП 2292. Курсовой проект - 5 - ти этажный жилой дом 20,1 х 16,2 м в г. Москва | AutoCad

1. Общие положения 3
2. Архитектурно - планировочное решение 8
3. Конструктивное решение здания 10
3.1. Конструктивная система здания 10
3.2. Ограждающие конструкции 11
4. Теплотехнический расчет 12
5.Технико-экономические показатели по зданию 14
Список используемой литературы 15

Исходные данные:
Номер варианта - 9;
Размеры в плане - L= 20; B=16;
Высота этажа – 2,8 м;
Количество этажей - 5;
Место лестничной клетки - 1;
Количество квартир/число комнат –3/2;
Конструктивная система - каркасная;
Тип фундаментов – плитный;
Утеплитель –Перлитопластбетон (ТУ 480-1-145-74)

Фундамент здания отдельно стоящий. Толщина фундаментных плит – 500мм. Перекрытия выполняются с использованием круглопустотных плит перекрытия.
Колонны здания приняты квадратного сечения с размерами поперечного сечения равными 500*500 мм.
Пространственная жесткость каркаса здания обеспечивается наличием в каждой секции диафрагма жёсткости. В качестве диафрагм жёсткости используются стены коридора.
Наружные стены выполняют только ограждающую функцию. Наружные стены из кирпича, с наружным утиплителем, толщина которых составляет в целом 520 мм. (300 мм. –колонна из пенобетона, 100 мм. – утеплитель, 120 мм. – облицовочный кирпич). Толщина внутренних стен зависят от их роли, если это межкомнатные (перегородки) – 100 мм., если межквартирные – 200 мм.

Технико-экономические показатели здания
1. Общая площадь: По= 1575.05 м2
2. Полезная площадь: Пп= 1403.05 м2
3. Нормируемая площадь: Пн=1160.3 м2
4. Строительный объем: Ос=4558.68 м3
5. Отношение нормируемой площади к общей площади здания: К1= Пн/ По= 0.73
6. Отношение строительного объема к нормируемой площади: К2= Ос/ Пн= 3.92
Дата добавления: 21.06.2019
РП 2293. АС 2 - х этажный магазин в г. Казань | AutoCad

Все несущие конструкции изготовлены из бетона кл. В25. Арматура класса A-III и A-I.
Фундамент – монолитные железобетонные ростверки по сваям.
Стены – железобетонные толщиной 250мм.
Колонны – железобетонные 300х300мм
Перекрытия – железобетонные толщиной 180мм.
Наружные стены выше отм. 0,000 выполнены многослойными:
1.Внутренний слой – газобетонные блоки марки I-B 2,5 D600 F 25 по ГОСТ 21520-89 на цементно-песчаном растворе М100, толщиной 300мм.
Утеплитель ISOVER Вентфасад Моно -120мм.
Воздушный зазор -70мм
Наружный слой –навесной вентилируемый фасад по системе «Навек»
2.Внутренний слой – монолитный железобетон.
Утеплитель ISOVER Вентфасад Моно -120мм.
Воздушный зазор -70мм
Наружный слой –навесной вентилируемый фасад по системе «Навек»
Наружные стены ниже отм. 0,000:
Внутренний слой – монолитный железобетон.
Утеплитель экструдированный пенополистерол «Стайроффоам 250А» - 80мм.
Наружный слой из кирпича марки КОРПо 1НФФ/100/2ю0/35/ГОСТ 530-2007 на растворе М100.
Внутренние перегородки кирпичные.
Кровля запроектирована – плоская, с мягким рулонным покрытием


Общие данные.
Кладочный план цокольного этажа на отм. -3.680
Кладочный план первого этажа на отм. 0.000
План на отметке 3.680 Разрезы 1-1, 3-3.
Разрез 2-2.
План кровли.
Перемычки
Схема армирования и крепления кирпичных перегородок толщиной 120мм к железобетонному каркасу
Схема армирования и крепления стен из бетонных блоков толщиной 39 0мм к железобетонному каркасу (ОАО "КОЛАМБИЯ")
Узлы утепления тамбура и стен цокольного этажа.
Узлы кровли
Дата добавления: 22.06.2019
ДП 2294. Дипломный проект - Модернизация узла подвески и механизма ствола вертлюга УВ - 320 в условиях ООО "Роскомсевер" | Компас

Рассмотрены существующие конструкции буровых вертлюгов, проведен обзор и анализ научно-технической информации и патентов по ним. Выявлено, что наиболее подверженными износу являются посадочные поверхности ствола и отверстия штропа вертлюга. В процессе работы вертлюга на посадочных поверхностях образуются мелкие дефекты, которые с течением времени разрастаются всё интенсивнее. Рассмотрены современные технологии ремонта и восстановления работоспособности деталей. Восстановление рабочих поверхностей ствола вертлюга осуществляется методом наплавки и последующей механической обработки. Технологические маршруты восстановления ствола и пальцев вертлюга представлены в графической части и пояснительной записке.
Рассмотрены вопросы БЖД , экологичности проекта и экономическая эффективность.

СОДЕРЖАНИЕ
ВВЕДЕНИЕ 7
1 ИЗНОС, РАБОТОСПОСОБНОСТЬ, РЕМОНТОПРИГОДНОСТЬ 9
1.1 Основные виды и причины износа деталей бурового оборудования 9
1.2 Факторы, влияющие на износ бурового оборудования 16
1.3 Методы повышения износостойкости деталей 17
1.4 Вертлюг УВ-320 как объект ремонта 26
2 ОРГАНИЗАЦИЯ ОБСЛУЖИВАНИЯ БУРОВОГО ОБОРУДОВАНИЯ 39
2.1 Основные положения планово-предупредительного ремонта 39
2.2 Основные ремонтные нормативы 42
2.3 Планирование ремонта бурового оборудования 47
3 ПАТЕНТНО-ИНФОРМАЦИОННЫЙ ПОИСК 55
4 ТЕХНИЧЕСКОЕ ПРЕДЛОЖЕНИЕ 63
5 РАСЧЕТ ЭЛЕМЕНТОВ ВЕРТЛЮГА УВ-320 66
5.1 Расчет ствола вертлюга 66
5.2 Расчет штропа 70
5.3 Расчет пальца штропа 74
5.4 Расчет внутренней трубы вертлюга 75
5.5 Расчёт припусков на механическую обработку 76
6 ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ 80
6.1 Общие сведения 80
6.2 Разработка технологических операций 83
6.3 Изготовление технологических маршрутов 84
7 ЭКОНОМИЧЕСКАЯ ЧАСТЬ 87
7.1 Расчет стоимости 87
7.2 Энергетические затраты 90
7.3 Экономическая эффективность 91
8 БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ПРОЕКТА 95
8.1 Недостатки базовой конструкции по обеспечению безопасности труда 95
8.2 Обеспечение безопасности труда на проектируемом оборудовании 96
8.3 Санитарные требования, к помещению или открытой производственной площадки для размещения, проектируемого оборудования 97
8.4 Травмобезопасность проектируемого объекта 105
8.5 Безопасность и защита в чрезвычайных ситуациях 108
8.6 Экологичность проекта 115
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 118

1) Схема расположения оборудования БУ-5000 БД – 1л. А1.
2) Схема циркуляции бурового раствора – 1л. А1.
3),4) Патентный поиск – 2л. А1.
5) Сборочный чертеж вертлюг УВ-320 – 1л. А1.
6), 7) Деталировка – 2л А1.
8) Технологический маршрут ремонта пальца вертлюга УВ-320
9) Технологический маршрут ремонта ствола вертлюга УВ-320

Технические характеристики вертлюга УВ-320:
1. Допустимая (максимальная) нагрузка, кН. 3200
2. Динамическая нагрузка, кН. 1450
3. Максимальное давление прокачиваемой жидкости (раствора) в стволе, МПа 32
4. Габаритные размеры, мм
высота с переводником и колпачком 3130
ширина по пальцам штропа 1110
5. Отклонение штопа возможно в пределах, градусы 30
6. Масса, кг 2980

Заключение
Проблема повышения работоспособности узлов и агрегатов буровых установок актуальна для совершенствования технологических процессов нефтяных и газовых промыслов.
Для решения проблемы повышения надежности и долговечности быстроизнашивающихся деталей узлов и агрегатов оборудования нефтегазовых промыслов, проведен анализ особенностей эксплуатации вертлюга на примере УВ-320, дефектов и неисправностей его деталей и узлов.
Разработано технологическое предложение по ремонту деталей вертлюга УВ-320 на примере ствола и пальцев, соединяющих штроп с корпусом, а также их последующей модернизации с целью увеличения ресурса и облегчения процесса разборки в дальнейшем.
Разработана схема технологические маршруты ремонта ствола и пальцев вертлюга УВ-320.
Проведена оценка безопасности и жизведеятельности проекта.
Выполнен технико-экономический анализ эффективности разработки дипломного проекта.
Дата добавления: 23.06.2019
ДП 2295. Дипломный проект - Модернизация буровой установки БУ 5000/320 | Kомпас

В дипломном проекте разработана упрощенная версия буровой лебедки. Новая конструкция не исчерпывает себя и является перспективной для внедрения в производство, а так же дает возможность и дальше вести работу в данном направлении.
Найденные технические решения обоснованы расчётами. В результате проведения мероприятия по замене буровой лебедки в составе спускоподъемного комплекса БУ 5000/320 ЭК-БМЧ на основе существующей модели буровой лебедки JC50DB путем установки электродвигателя отечественного производства частотно-регулируемый типа AFD423MA6 , была получена прибыль 1856148 руб, а кроме того снижена масса агрегата по сравнению с базовой моделью на13120кг. Таким образом, представленный проект является экономически выгодным и рекомендуется для реализации на промыслах Западной и Восточной Сибири .

Содержание
Введение
1.Анализ конструкций буровых установок отечественного и зарубежного производства
1.1 Буровая установка ООО «Уралмаш НГО Холдинг» БУ 5000/320 ЭК-БМЧ
1.2 Буровая установка ООО «Хунхуа СНГ» ZJ 70 DBS
1.3 Сравнительная характеристика применяемого оборудования в составе основных комплексов буровой установки
1.3.1 Буровые лебедки JC 50DB и ЛБУ-1500 ЭТ-3
1.3.2 Ротор ZP 375(К.Н.Р.) и Р-950(«Уралмаш»)
1.3.3 Силовой верхний привод «NOV»TDS-11SA
1.3.4 Буровой насос 3NB-1300F(К.Н.Р) и УНБТ-1180(«Уралмаш»)
2.Патентная проработка существующих полезных моделей буровых лебедок
2.1Патент № 2083795 Лебедка буровой установки
2.2Патент №123058 Буровая лебедка
2.3Патент№89093Буровая лебедка…
2.4Патент №134982 Лебедка буровой установки
3.Техническое предложение
3.1Обоснование применения модели буровой лебедки JC50DB«Хунхуа СНГ» в составе БУ 5000/320 ЭК-БМЧ
3.2 Общие характеристики и функциональное описание электродвигателя AFD 423MA6 завода «Кранрос»
4.Расчетная часть
4.1Выбор силового привода
4.2 Тяговая характеристика проектируемой лебедки
4.3 Расчет бочки барабана
5.Безопасность и экологичность проекта
5.1 Анализ опасных и вредных производственных факторов
5.2 Обязанности по обеспечению безопасных условий и охраны труда
5.3 Производственная санитария
5.4 Безопасность работ при спуско-подъемных операциях
5.5 Безопасность и защита в чрезвычайных ситуациях
5.6 Экологичность проекта
6.Экономическая часть
6.1 Расчет капитальных вложений на модернизацию буровой лебедки
6.2 Затраты на приобретение материалов и комплектующих изделий
6.3 Транспортные затраты
6.4 Затраты на монтаж оборудования
6.5 Определение экономической эффективности модернизации спуско-подъемного комплекса буровой установки БУ 5000/320 ЭК-БМЧ
Заключение
Список использованных источников


1. Вышка                                                                                      А - образная, секционная, оборудованная                                                                                                                    маршевыми  лестницами и эвакуатором для                                                                                                                верхового рабочего                                                   2. Полезная высота буровой вышки, м                                                                            45
3. Номинальная длина свечи, м                                                                                     25 
4. Допускаемая скорость ветра, м/с 
 - (ветровые районы Iа, I, II, III СНИП 2. 01. 07-85 Приложение 4)                                                _ 
 - в рабочем состоянии при нагрузке до 320 т                                                                20 
 - в нерабочем состоянии (с установленной на подсвечниках бурильной колонной)                       25
5. Система верхнего привода                                                                                   TDS-11 SA
6. Статическая грузоподъемность, кН                                                                          3200 
7. Максимальная скорость вращения ствола, с (об/мин)                                                   3,33 (200) 
8. Максимальное давление прокачиваемой жидкости, мПа                                                     25 
9. Стояк манифольда 0140х12                                                                                     одинарный
10. Основание                                                                                                   блочное разборное
11. Отметка пола буровой от уровня земли, м                                                                   9,89 
12. Суммарная площадь подсвечников, м2                                                                        6,22 
13. Расстояние от уровня земли до низа подроторных балок 
(просвет для установки превенторов), м                                                                         7,1
14. Просвет, обеспечиваемый при съезде со скважины на кусте, м                              3,62 
15. Диаметр бурильных труб, мм                                                    114; 127; 147
16. Диаметр талевого каната, мм                                                    32
17. Скорость подъема крюка, м/с                                                    0,0 . . . 1,6
18. Длина квадрата, м                                                            27+1,0
19. Обеспечиваемый метод бурения скважин - кустовой


1 Габаритные размеры (длина х ширина х высота)              6000мм. х3000мм. х2546мм.   
2 Максимальная входная мощность                                1260kW;
3 Максимальное усилие разрыву ходового каната              350kN;
4 Диаметр каната                                                   35мм;
5 Число передач                                                     Бесступенчатое;
6 Главный тормоз                                                   Рекуперативный с теплопоглащением;
7 Фиксирующий (вспомогательный) тормоз                     S80 гидравлический дисковый;
8 Номинальное давление гидролинии дискового тормоза       8 МПа

Заключение
В результате выполненных работ и исследований проведена замена буровой лебедки в составе БУ 5000/320 новой лебедкой на основе существующей модели JC50DB и установки в качестве силового привода электродвигатели переменного тока типа АFD423MA6. В результате стоимость предлагаемой буровой лебедки снижена на 2820000 руб. по сравнению с базовой (экономия 29%). Кроме того, достигнуто уменьшение массы проектируемой лебедки на 13200кг. (что составляет 32% от веса первоначальной модели, равного 40620 кг). Общий экономический эффект составил 1856148 руб.
Дата добавления: 23.06.2019


© Rundex 1.2
Cloudim - онлайн консультант для сайта бесплатно.