Добавить проект
Прочитать правила
Платный доступ
Авторизация:
Информация


c%20

Найдено совпадений - 2600 за 0.00 сек.


КП 436. Курсовой проект - Расчет коробки скоростей горизонтально фрезерного станка мод. 6Н81ГМ | Компас
Введение
1 Расчет режимов резания
2 Кинематический расчет коробки скоростей
3 Выбор электродвигателя
4 Принцип действия принципиальной электрической схемы
5 Расчет зубчатой передачи
6 Расчет клиноременной передачи
7 Расчет диаметров валов
8 Проектирование кулачка
9 Расчет второго вала коробки скоростей
Литература






Дата добавления: 25.05.2013



































КП 437. Курсовой проект - Охрана воздушного бассейна от выбросов | AutoCad

Введение
1. Характеристика объекта и исходные данные
1.1. Исходные данные
1.2. Характеристика объекта
2. Определение количества вредных веществ, выбрасываемых в атмосферу
2.1. Определение расхода топлива и дымовых газов
2.2. Расчет количества вредных веществ, выбрасываемых в атмосферу
2.2.1 Расчет выбросов оксидов азота
2.2.2 Расчет выбросов диоксида серы
2.2.3 Расчет выбросов оксида углевода
3. Инвентаризация выбросов загрязняющих веществ
4. Расчет приземных концентраций вредных веществ
4.1. Определение концентраций диоксида азота при работе на основном топливе
4.2. Расчет приземной концентрации диоксида серы при работе на резервном топливе
4.3. Предельно допустимый выброс
5. Эколого-экономическое обоснование выбора пылегазоочистного оборудования
5.1Расчет абсорбционной установки для очистки дымовых газов от диоксида серы
5.1.1Известковый метод очистки
5.1.2. Содовой метод очистки
5.1.3 Подбор насосов
6. Выбор экономически целесообразного вариант очистки дымовых газов

Характеристика объекта.






































Дата добавления: 26.05.2013

КП 438. Курсовой проект (колледж) - Газоснабжение улицы г. Баймак | Компас


1 Введение
2 Характеристика района строительства
3 Расчет характеристик газового топлива
3.1 Состав и свойства природного газа
3.2 Расчет характеристик природного газа
3.2.1 Расчет теплоты сгорания
3.2.2 Расчет плотности газового топлива
3.2.3 Расчет плотности газа относительно плотности воздуха
3.2.4 Расчет объема воздуха, необходимого для горения
3.2.5 Определение объемов продуктов сгорания
4 Выбор трассы газораспределительных систем
5 Определение расчетных расходов газа
5.1 Определение количество потребителей
5.2 Определение газовых расходов газа
6 Основные положения расчета сетей низкого давления
7 Гидравлический внутридомового газопровода
8 Выбор оборудования газорегуляторного пункта
8.1 Устройство газорегуляторных пунктов
8.2 Выбор газорегуляторного пункта
9 Безопасная эксплуатация газорегуляторных систем и оборудования

В курсовом проекте проектируется система газораспределения в населенном пункте РБ.
Цель проекта: проектирование тупиковых сетей газораспределения, которые запитываются через ГРП от межпоселковых газопроводов среднего давления.
Газораспределительная система прокладывается в соответствии со СНиП 42.01-2002. Для строительства используются стальные трубы, которые защищены от коррозии пассивными и активными методами.
Застройка населенного пункта производится одноэтажными зданиями. Газ используется для пищеприготовления и отопления. Промышленные предприятия не имеются.

ХАРАКТЕРИСТИКА РАЙОНА СТРОИТЕЛЬСТВА

Улица Осипенко города Баймак расположена на юго-востоке республики Башкортостан.
Для проектирования и строительства газораспределительных сетей, необходимо выбрать тип системы газоснабжения, определиться с трассировкой газопровода. Чтобы осуществить эти задачи, необходимо собрать информацию о районе расположения участка строительства, а в первую очередь, нужно знать особенности района, в котором предполагается прокладка трассы газопровода
Застройка данной территории осуществлена одноэтажными одноквартирными домами, общим числом 66 домов. Дома имеют приусадебные участки для ведения подсобного хозяйства
При прокладке газопровода возможны его пересечения с дорогами. Покрытие дорог гравийное. Пересечения выполняются в футлярах с установкой контрольной трубки на одном из его концов (согласно требованиям ПБ 12-529-03).
Рельеф местности относительно ровный. Грунт – глина. Глубина промерзания составляет 1,62м. Так как газопровод транспортирует осушенный газ, глубина заложения в проекте 0,8 метра.
Данные об уровне грунтовых вод получены из результатов гидрогеологических изысканий. Грунтовые воды расположены на глубине 4-5м.
Климат в районе строительства резко-континентальный. Минимальная температура зимнего периода -38°С (абсолютный минимум за все время исследований составил -470С), максимальная температура летнего периода + 36°С. Средняя температура самого холодного месяца - 21°С, а средняя температура самого теплого + 18°С.
Вдоль трассы газопровода имеются следующие коммуникации: надземные линии электропередач и кабелей связи.
Расстояние от газопроводов до коммуникаций выполняются согласно требованиям СП 42-101-03.
Вдоль деревни проходит трасса газопровода среднего давления. Предполагается снабжение газом данного населенного пункта от газопровода давлением 0,3 МПа через ГРПШ-04-2У1, которое понижает давление до 3000 Па.

РАСЧЕТ ХАРАКТЕРИСТИК ГАЗОВОГО ТОПЛИВА
Состав и свойства природного газа

Газы - это одно из агрегатных состояний вещества, в котором его частицы движутся хаотически, равномерно заполняя весь возможный объем.
Для газоснабжения используется природный газ. Природные горючие газы состоит в основном из углеводородов метанового ряда. Они содержат метан, этан, пропан, бутан, пентан и гексан, а также их изомеры, азот, диоксид углеводорода, сероводорода, водород и инертные газы,
Метан CH4 - бесцветный газ нетоксичный газ без запаха и вкуса (75% углерода, 25% водорода; 1м3 имеют массу 0,717кг).
Высшая теплота сгорания Qв составляет 39820 кДж/м3, 9510 ккал/м3, низшая Qн- соответственно 35880 кДж/м3, 8570 ккал/м3. Содержание метана в природных газах достигает 98%, поэтому его свойства практически полностью определяют свойства природных газов, Азот N2 - двухатомный газ, тяжелый, малореакционный при низких температурах имеет слегка кисловатый запах и вкус (1м3 диоксида углерода составляет 1,98кг).
Оксид углерода CO - бесцветный нетоксичный газ без запаха и вкуса 1м3 равен 1,25кг.
Водород H2 -бесцветный нетоксичный газ, без вкуса и запаха (1м3 равен 0,09кг).
Сероводород H2S -тяжелый газ с сильным неприятным запахом (1м3 равен 1,54кг). В природных газах содержание сероводорода не должно быть долее двух граммов на 100м3 газа. Существует сухие и мокрые методы очистки газа от сероводорода.
По сравнению с другими видами топлива природный газ имеет следующие преимущества:
- низкая себестоимость;
- высокая теплота сгорания, обеспечивающую целесообразность транспортирования его по магистральным газопроводом на значительные расстояния;
- полное сгорание, облегчающее условия труда персонала, обслуживающего газовое оборудование и сети;
- отсутствие в его составе оксида углерода, что особенно важно при утечках газа, возникающих при газоснабжении коммунальных и бытовых потребителей;
- высокая жаропроизводительность (более 2000C);
- возможность автоматизации процессов горения и достижения, высоких КПД;
- природный газ является ценным сырьем для химической промышленности;
- использование газового топливам позволяет внедрять эффективные методы передачи теплоты, создавать экономные и высокопроизводительные тепловые агрегаты с меньшим габаритными размерами, стоимостью и высоким КПД, а также повышать качество продукции;
- применение газового топлива позволяет избежать потерь давления, теплоты, определяемых механическим и химическим недожогом, При работе агрегатов на газовом топливе возможно также ступенчатое использование продуктов горения;
- при сжигание природного газа требуется минимальный избыток воздуха для горения, и достигаются высокие температуры в печи;
- формы газового пламени сравнительно легко регулируется и поддается различным видоизменяемым, что особенно важно, когда возникает необходимость быстро сосредоточить и развить в определенном пункте высокую степень нагрева;
- газоснабжение городов и населенных пунктов значительно улучшает состояние их воздушного бассейна;
- природный газ содержит наименьшее количество таких вредных химических примесей, как сероводород.
Вместе с тем газовому топливу присущи и отрицательные свойства: природный газ взрывоопасен и пожароопасен.
Природный газ не имеет запаха, поэтому для выявления утечек газа ему придают запах - одаризуют. В качестве одарантов применяют этилмеркоптан C2H5SH - имеет резкий запах.
Дата добавления: 28.05.2013
РП 439. ОВ Двухэтажный коттедж с цокольным этажом в г. Москва | AutoCad

В здании запроектирована приточно-вытяжная вентиляция. Приток осуществляется с помощью систем П1, П2, вытяжка - системами В1, В2, В3, В4.
Система ПВ1 предназначена для притока/вытяжки воздуха в/из помещения цокольного этажа. Воздухообмен осуществляется приточно-вытяжной установкой WOLF Top21, состоящей из секций нагрева: 1Cu/Al LT, 2-х секций фильтра, секции охлаждения: 8Cu/Al LT, вентиляторов (приток) VM250-0.70/230EC-3 450 (вытяжка) VM250-0,48/230EC-2970, секции рекуперации и секций шумоглушителя.
Подача свежего (забор отработанного) воздуха на 1-ый, 2-ой этажи осуществляется системой ПВ2 с помощью установки WOLF Top43, состоящей из 2-х секций нагрева: 4Cu/Al LT и 1Cu/Al LT, 2-х секций фильтра, секции охлаждения: 8Cu/Al LT, оросительной камеры, вентилятора (приток) VM310-2,915/400EC-4100 (вытяжка) VM310-2,915/400EC-4100, секции рекуперации и секций шумоглушителя.
Вытяжка из санузловых помещений осуществляется системой В3 на базе канального вентилятора Systemair К250L, шумоглушителя LDC 250-900, обратного клапана RSK250. Проектом предусмотрено устройство отдельного выбросного канала от кухонного зонта. Воздух подается и удаляется через решетки 4АПН, а также декоративные решетки в строительном исполнении. Минимальные площади свободного сечения декоративных решеток указаны на планах.
КОНДИЦИОНИРОВАНИЕ
Для поддержания заданных климатических условий в доме приняты системы кондиционирования на базе VRV-системы и сплит-системы производства фирмы Daikin.
Для помещений 1-го, 2-го этажей и помещения постирочной запроектирована мультизональная VRV cистема кондиционирования Daikin (система К-1), состоящая из одного наружного блока Daikin RXYQ20P и внутренних блоков FXSQ25P - 2шт., FXAQ20P - 1 шт., FXSQ20P - 1 шт., FXDQ25P - 2шт. FXSQ100P - 1 шт., FXSQ32P - 2 шт., FXSQ50P - 3 шт., FXSQ40P - 1 шт. Для помещения серверной приняты моно сплит-система К-4 (К-4р) с внутренними блоками настенного типа, с "зимним комплектом" и 100% резервированием, состоящиие из наружных блоков Daikin RR71BW и внутренних блоков FAQ71B. Охлаждение воздуха в вентиляционных установках П1, П2 осуществляется чиллером EUWAB16KBZW (система К-5).

Общие данные.
Характеристика отопительно-вентиляционных систем
Характеристика системы кондиционирования
Расчетные таблицы
План вентиляции и кондиционирования. Цокольный этаж.
План вентиляции и кондиционирования. 1-ый этаж.
План вентиляции и кондиционирования. 2-ой этаж.
План вентиляции и кондиционирования. Чердак.
План трубопроводов тепло-, холодоснабжения и дренажа. Цокольный этаж.
План трубопроводов тепло-, холодоснабжения и дренажа. 1-ый этаж.
План трубопроводов тепло-, холодоснабжения и дренажа. 2-ой этаж.
План трубопроводов холодоснабжения и дренажа. Чердак.
Аксонометрическая схема вентиляции. Системы П1, В1, В3.
Аксонометрическая схема вентиляции. Системы П2, В2.
Аксонометрическая схема кондиционирования.
Аксонометрическая схема трубопроводов.
Дата добавления: 29.05.2013
КП 440. Курсовой проект - Рыхлитель навесной для трактора Т-130ГП | Компас

1. Общий вид машины с размещенным на ней рыхлителем.
2. Компоновка (навеска) рыхлителя на базовой машине.
3. Рабочие чертежи стойки зуба рыхлителя + ребро рыхлителя + корпус рыхлителя + тяга верхняя.


Введение
1. Задание
2. Характеристика базовой машины
3. Характеристики грунтов (IV –VI категории)
4. Анализ конструкций подвесных рыхлителей
4.1 Технический анализ
5.Тяговый расчёт рыхлителя
5.1 Определение усилий, действующих на машину при рыхлении
5.2 Расчёт мощности двигателя
5.3 Условия движения базовой машины с рыхлителем
6. Расчёт параметров рыхлителя
7. Выбор рабочих положений и определение нагрузок рыхлителя
8.Расчёт гидропривода рыхлителя
9. Расчёт стойки зуба рыхлителя на прочность
10. Расчёт устойчивости рыхлителя
Заключение
Литература

Базовая машина – трактор Т-130ГП.
Грунты – плотные и мёрзлые (IV-VI категории).
Рыхлитель навесной.
Расчётно-пояснительная записка курсового проекта должна включать следующие разделы:
анализ конструкций рыхлителей
1. расчёт основных параметров рыхлителя, включая тяговый расчет базовой машины, условий движения базовой машины для заданных грунтов, расчет сил, действующих на базовую машину и рыхлитель с обоснованием выбора рабочих положений, выбор гидравлической схемы и расчет гидропривода рыхлителя.
2. Расчет стойки зуба на прочность с обоснованием выбора расчетных сечений и материала стойки, разработку основных узлов рыхлителя и компоновка его на базовой машине.





1. Конструкция стойки зуба рыхлителя.
Исследование ВНИИстойдормаша резанья прочных и мёрзлых грунтов (1972-1974г) показали неэффективность сложных конструкций зуба рыхлителя:
включение в конструкцию зуба твердосплавных вставок (ВК8, ВК10) повышает ресурс зуба на 4-6%, а удорожает изготовление на 80%, причем при нарушении технологии закрепления вставок (некачественная пайка) разрушение зуба происходило в течении 5-10 первых часов работы. азотирование режущей части зуба с целью повышения твёрдости незначительно увеличивает ресурс зуба на 2-3%.
использование 2-3 зубьев на одной стойке приводило к резкому увеличению нагрузок на базовую машину (увеличение износа двигателя и трансмиссии) с незначительным увеличением производительности до 5%.
Применение отвалов в конструкции зуба не приводит к увеличению производительности рыхлителя в условиях твёрдых и мёрзлых грунтов.
Поэтому применена равнопрочная стойка с одним зубом из стали 40ХН2МА с углом заострения до 20°.

2. Конструкция навесного рыхлителя.
Выбрана четырёхточечная ( параллелограммная ) с креплением внутренней рамы к корпусу заднего моста базового трактора, что позволяет использовать только 1 гидроцилиндр для привода зуба рыхлителя (раздел 4 достоинства и недостатки конструкций).
Применения верхних и нижних тяг из швеллера № 18 позволяет создать прочное и жёсткое закрепление оборудования на базовой машине.
Использование труб большого диаметра приводит к дополнительному расходу материала. Использование коробчатой конструкции (в виде 2-х швеллеров или двутавров) ,необходимо только для базовых машин очень большой мощности (Комацу: D155A-1, D355A-3, D455A-1).
Применение 4-х ребёр корпуса рыхлителя с выборкой под уголки и швеллера позволяют усилить скрепление их между собой и создать прочную конструкцию с повышенной жёсткостью, что снижает нагрузку на узлы крепления рыхлителя к базовой машине.
Включение рёбер жесткости между швеллерами дополнительно повышает жёсткость конструкции и создает места для использования дополнительные зубьев для рыхления более мягких грунтов.
Сварные конструкции основных узлов рыхлителя подчёркивают уникальность разработки, так как в серийных образцах используется литые или штампованные конструкции.
Дата добавления: 02.06.2013
КП 441. Курсовой проект - Фасонный резец для обработки фасонной поверхности детали и осевой инструмент для обработки ступенчатого отверстия | AutoCad

Проектирование круглого фасонного резца
Расчет комбинированного инструмента на примере развертки-зенковки
Список литературы

Расчет фасонного резца для обработки фасонной поверхности


Размеры детали:
l1=10 мм D=35 мм R=20 мм
l2=25 мм d1=22.28 мм материал: сталь 40г
l3=30 мм d2=34 мм δв=600 МПа
l4=40 мм d3=32 мм


Материал резца выбираем в соответствии с приложением В. Для чистовой обработки в качестве материала для круглого резца выбираем по ГОСТ быстрорежущую сталь Р6М5Ф3 со следующими характеристиками:
твердость после закалки 63…65 HRC;
температура теплостойкости 630 ºС
температура закалки 1220 ºС
температура отпуска 550 ºС

Технические требования на изготовление.
1. Материал – сталь Р6М5Ф3 ГОСТ 19265.
2. Твердость 63…65 HRC.
3. Неуказанные предельные отклонения размеров: валов h14; остальных ±AT15/2, а угловых ±AT16/2.
4. Точность резьбы 7Н6Н ГОСТ 16093.
5. При обработки деталей на правом вращении резьбы должна быть левая, а при обработке на левом вращении – правая.
6. Допуски на линейные размеры фасонного профиля шаблона при его изготовлении не должны превышать ±0,01 мм
7. Остальные технические требования по ТУ.08 – 78.
8. Маркировать обозначения, шрифт 4 ГОСТ 2930

Расчет осевого инструмента для обработки ступенчатого отверстия

Исходные данные:
Деталь: корпус; материал детали – сталь 3 ГОСТ380-71; диаметр обрабатываемого отверстия d=24H7 и фаской 2х30º; отверстие (предварительно обработанное),длиной l=45 мм.
операция: вертикально-сверлильная.
Режущий инструмент: развертка-зенкер. Обработка отверстия производится на станке 2Н135.

Выбор и обоснование материала режущей части.
Т.к. материал заготовки ст. 35 и видом обработки является развертывание – зенкерование материалом режущей части выбираем быстрорежущую сталь Р6М5.
 
Дата добавления: 03.06.2013
КП 442. Курсовой проект - Корпус с очистными сооружениями и санитарно - промышленной лабораторией 30 х 14 м в г. Красноярск | AutoCad

На отм. 3.600 в осях 1-2 распологаются помещения веткамер , электрощитовой и кабинета начальника очистных сооружений.
В корпусе предусмотрены две группы гардеробных помещений. На первом этаже разме- щена гардаробная для работающих на очистных сооружениях , на отм. 7.200 размещена гардеробная для работников СПЛ. В составе гардеробных предусмотрены санузлы , душевые, умывальники , комната личной гигиены женщин.
Здание корпуса 22 проектирется прямоугольным в плане размерам 14.0мх30.0м. с высотой 13.7м. от уровня земли и подвалом на отм. -4.5м . Высоты этажей 3.6м , высота подвала 4.5м. Подземная часть заглублена ниже уровня земли на 3.0 м
Для эвакуации людей в корпусе предусматривается лестничная клетка типа Л1 и лестница 3-го типа.
Производственные помещения очистных н отм.0.000 оборудованы подвеной кран-балкой грузоподъемностью 3.2т.

Подвал - монолитный железобетонный.
Карасс - стальной из прокатных профилей.
Перерытия - монолитные железобетонные толщиной 150мм.
Порытие - стальной оцинкованный профнастил по стальным прогонам.
Лестницы - сборные железобетонные ступени по стальным косоурам из прокатных профилей.
Наружные стены - панели типа "Сендвич" с минераловатным утеплителем толщиной 150мм.
Перегородки - блоки толщиной 120мм из ячеистого бетона по ГОСТ 31360-2007.
Окна - двухкмерные стеклопакеты в ПХВ переплетах по ГОСТ 30674-99.
Двери внутренние - деревянные по ГОСТ 6629-88.
Двери наружные - по ГОСТ 14624-84.
Кровля - плоская рулонная из ПВХ мембраны LOGICROOF V-RP 1.2 c механическим креплением с наружним организованным вводостоком.
Водосточная система - МП "Престиж" Компании " Металлпрофиль"
 


ОБЩАЯ ПЛОЩАДЬ - 1372,6 м2
ПОЛЕЗНАЯ ПЛОЩАДЬ - 1263,23 м2
РАСЧЕТНАЯ ПЛОЩАДЬ - 960,78 м2
ПЛОЩАДЬ ЗАСТРОЙКИ - 477 м2
СТРОИТЕЛЬНЫЙ ОБЪЕМ ЗДАНИЯ - 7360 м3

Общие данные.
Планы на отм. -4.500, 0.000, 3.600, 7.200.
Разрезы 1-1, 2-2, 3-3.
Фасады
План кровли. Узлы 1 - 9.
Дата добавления: 05.06.2013
КП 443. Курсовые проекты по архитектуре - Детский сад, торговые центры, школа | AutoCad

1. Исходные данные:
1.1. Район строительства г. Томск
1.2. Основная группа: здания и помещения учебно-воспитательного назначения. Тип здания: учреждения образования и подготовки кадров. Подтип: детские дошкольные учреждения. Вид: детский сад на 90 мест
1.2 Климатические условия района строительства:
- Средняя температура наиболее холодной пятидневки обеспеченностью 0.92, text=-40°C. Томск находится в нормальной зоне влажности, режим помещений здания - сухой. Условие эксплуатации О.К. – А.
- Средняя скорость ветра за период со средней суточной температурой воздуха 8°С – 4,7 м/с.
- Средняя месячная относительная влажность воздуха наиболее холодного месяца – 80%.
- Количество осадков за ноябрь –март – 185мм.
- Преобладающее направление ветра за декабрь – февраль – Ю.

Торговый центр №1:
1.Исходные данные.
1.1. Данные по заданию:
- Город Пенза
- Основная группа- здание сервисного обслуживания населения
- Тип здания общественного назначения - предприятие торговли
1.2. Климато-геологическая характеристика района строительства:
- Глубина промерзания грунта –1.5 м;
- За условную отметку 0.000 принят уровень чистого пола первого этажа
- Температура воздуха наиболее холодной пятидневки с обеспеченностью 0,92 равна минус 29°C
- Продолжительность отопительного периода-207 сут.
- Средняя температура воздуха отопительного периода минус 5.1°C
- Средняя месячная относительная влажность воздуха наиболее холодного месяца составляет 55%
- Количество осадков за ноябрь-март-221мм.
- Средняя скорость ветра за период со среднесуточной температурой воздуха 8°С равна 4.8м/с

Торговый центр №2:
1.1 Исходные данные на проект
Район строительства г. Новосибирск.
Необходимо разработать проект функционально-типологическая группа зданий Торговый Центр.

Школа:
1. Исходные данные
1. Место строительства – г. Екатеринбург;
2. Основная группа: сооружения, здания и помещения учебно-воспитательного назначения;
учреждения образования и подготовки кадров; подтип – общеобразовательные учреждения; вид – полная средняя школа(на основе классификации по функциональным признакам)
3. Расчетная температура наружного воздуха ;
4. Расчетная температура внутреннего воздуха ;
5. Относительная влажность внутреннего воздуха общественного здания ;
6. Класс здания по функциональной пожарной опасности:
Ф4 - здания научных и образовательных учреждений, научных и проектных организаций, органов управления учреждений, в том числе:
Ф4.1 - здания общеобразовательных учреждений, образовательных учреждений дополнительного образования детей, образовательных учреждений начального профессионального и среднего профессионального образования;
7. Степень огнестойкости – III.
Дата добавления: 12.06.2013
КП 444. Курсовой проект - Основания и фундаменты здания механического цеха г. Пятигорск | AutoCad

1. Анализ исходных данных по над фундаментной конструкции.
2. Анализ инженерно-геологических и гидрогеологических условий площадки строительства.
3. Определение глубины заложения фундаментов (ростверков).
4. Выбор типов оснований и фундаментов на основании сравнения вариантов
4.1. Определение предварительных размеров подошвы фундамента мелкого заложения Ф1.
4.2. Определение предварительных размеров подошвы фундамента мелкого заложения Ф2.
4.3. Определение предварительных размеров фундаментов глубокого заложения Ф1.
4.4. Определение предварительных размеров фундаментов глубокого заложения Ф2.
5. Конструирование фундаментов. Защита помещений от грунтовых вод и сырости.
6. Расчет оснований по предельным состояниям.
7.Сейсмичекий расчет.
8. Заключение по проекту.
9. Использованная литература
 


Здание бескаркасное с продольными несущими стенами из кирпича (толщина стен 510 мм), перекрытия – сборно-монолитные.
Кровля здания плоская неэсплуатируемая.
Здание имеет подвал: относительная отметка пола канала – 2,15 м. Отметка пола первого этажа 0,00, на 0,15 м выше планировочной отметки, т.е. высота цокольной части здания 0,15 м.
Здание предназначено для строительства в IV ветровом районе, II снеговом районе, тип местности А, в сухой зоне <3>. По СНиП <2>:
- нормативная ветровая нагрузка на высоте до 20 м над поверхностью земли 60 кгс/м2;
- нормативная снеговая нагрузка 120 кгс/м2 .
Предельные деформации основания <1>: относительная разность осадок =0,0024;
крен =0,005; средняя осадка =15 см.





Уровень грунтовых вод находится на глубине 6,1 м. от естественного уровня земли.
Грунты имеют слоистое напластование с выдержанным залеганием грунтов.

Основания строительной площадки сложены следующими грунтами (согласно ГОСТ 25100-95 <4]):
- суглинок желто-бурый, мягкопластичный (0,50 - глина бурая, тугопластичная (0,25 - супесь зелено-бурая, в пластичном состоянии, (0≤IL=0,368≤1), легкая пылеватая, R0 = 220 кПа, мощность слоя 3,2-3,5 м.
- песок серо-бурый пылеватый, средней плотности, маловлажный (SR=0,327), сильножимаемый (Е=145МПа), R0 = 200 кПа, мощность слоя: 3,9-4,0 м.
- глина светло-бурая, тугопластичная (IL=0,25), слабосжимаемая (Е=22МПа), R0 = 330 кПа, мощность слоя 1,4-2,0 м.
Водоносный горизонт приурочен к супесчаному слою.
Дата добавления: 12.06.2013
КП 445. Курсовая работа - Расчет фундамента для 9-ти этажного здания с подвалом Hпод.=3.2 м | AutoCad

1. Анализ исходных данных по надфундаментной конструкции
2. Анализ инженерно – геологических и гидрогеологических условий площадки строительства
2.1. Определение физико – механических свойств грунтов основания
2.2.Определение глубины заложения фундаментов
2.2.1.По назначению и конструктивным особенностям проектируемого сооружения
2.2.2.По глубине заложения фундаментов примыкающих сооружений
2.2.3.по нагрузкам и воздействиям на основания и фундаменты инженерно – геологическим условиям площадки строительства
2.2.4. По существующему и проектируемому рельефу застраиваемой территории
2.2.5. По глубине промерзания грунтов
2.2.6. По гидрогеологическим условиям в период строительства и эксплуатации сооружения
3. Фундаменты мелкого заложения
3.1. Определение размеров подошвы фундамента мелкого заложения
3.2. Конструирование фундаментов мелкого заложения
3.3. Расчет осадок фундаментов мелкого заложения по схеме линейно деформируемого полупространства методом послойного суммирования
4. Свайные фундаменты
4.1. Назначение и работа сваи
4.2. Основы классификации свай
4.3. Определение параметров свайного фундамента
4.4. Конструирование свайных фундаментов
4.5. Последовательность расчета осадок свайного фундамента
5. Технико-экономическое сравнение вариантов
Список используемой литературы

Здание жилого дома – 9-этажное с подвалом hпод=3,2 м под всем зданием, размеры здания в осях 16.5х19,5м, стены здания выполнены из керамического кирпича толщиной 510 см. Перекрытия здания сборные железобетонные.
Здание имеет разную чувствительность к осадкам, притом степень этой чувствительности определяется в основном их жёсткостью. Действующие нормы мерой жёсткости зданий и сооружении принимают отношение длины здания Lк его высоте Н.L/H=19,5/ 28= 0,7
Здание с жёсткой конструктивной схемой, обладает высокой прочностью и общей пространственной устойчивостью, обеспечивает равномерную деформацию системы основание - сооружение (здание) и допускают увеличенные предельные осадки сооружений. Поэтому рас¬чётное сопротивление грунта основания под жёстким зданием можетбыть повышено введением коэффициента условий работы γс2и зависятот — и вида грунтов основания. Для зданий с гибкой конструктивной схемой γс2= 1.
Расчетные значения усилий в нижних сечениях стен в исходных данных на проектирование.

















Дата добавления: 12.06.2013
РП 446. СТН Модернизация системы телевизионного наблюдения | AutoCad

- видеоконтроль обстановки в помещениях и на территории объекта с регистрацией объекта в зоне обзора;
- отображение на 19" мониторе, установленном в помещении №12 технического центра всей видеоинформации с 7-ти телекамер (ТК1-ТК7);
- отображение на 19" мониторе, установленном на посту охраны (строения №6) видеоинформации с 4-х телекамер (ТК4-ТК7);
- архивирование видеоинформации (за 7 суток) с возможностью ее просмотра.
Система телевизионного наблюдения включает в себя:
- 7 IP-видеокамер цветного изображения в термокожухе с ИК подсветкой В7210;
- 2 LCD-монитора 19'' цветного изображения L1942SE-BF;
- видеосервер;
- 1 коммутатор DGS-1210-16;
- 1 коммутатор GSD-804P.

Общие данные.
Структурная схема СТН
Зоны контроля видеокамер СТН (ТК №1- ТК №3). М1:100
Зоны контроля видеокамер СТН (ТК №4 - ТК №7). М1:100
Схема расположения оборудования и прокладки трасс по техническому центру. М1:100
Схема расположения оборудования и прокладки трасс по территории. М1:200
Дата добавления: 20.06.2013
КП 447. Курсовой проект - Проектирование формующей оснастки для литья зубной щетки | Компас, SolidWorks

Введение                                    3
1. Расчетная часть                                        
1.1.Выбор литьевой машины                            4
1.2.Расчет гнёздности формы                            5
1.3.Расчет времени цикла                                6
1.4.Расчет производительности                            7
1.5.Расчет усадки изделия                                7
1.6.Расчет усилия выталкивания                            7
1.7.Расчет системы охлаждения                            8
1.8.Расчёт горячеканальной системы                        9
2. Прочностной расчет                                        
2.1.Расчёт опорных плит на смятие                        12
2.2.Расчёт колонки на изгиб                            16
2.3.Расчет болтов на срез                                17
2.4.Расчет рым-болта                                19
3. Обоснование выбора деталей и материалов формы                    20
Заключение                                        21
Список использованной литературы                            22

Целью данной работы является конструирование горячеканальной формы для литья под давлением зубной щётки.
Суть этой технологии в том, что форма состоит из двух частей: холодной матрицы, в которое происходит формообразование изделий, и значительно более сложной горячей части. Обогреваемые горячие каналы формы постоянно заполнены расплавленным полимерным материалом. Горячеканальная часть формы оснащена предкамерными узлами впрыска с точечным впуском. При работе инжекционный узел литьевой машины постоянно сомкнут с формой.

Выбор модели литьевой машины для производства заданного изделия осуществляется по 3 условиям: расчетный объем отливки, необходимое усилие смыкания формы, пластикационная производительность.
Предварительный выбор типа машины можно произвести по номинальному усилию запирания Р, кН в зависимости от массы изделия, а затем определить конкретную марку литьевой машины.
Номинальное усилие 2000 кН
По величине усилия выбираем машину D200-730NC111 с усилием смыкания 2000кН
Параметры машины D200-730NC111 фирмы Demag

Число гнёзд оценивается исходя из объёму впрыска с учётом плотности материала, пластикационной производительности материально цилиндра и усилия смыкания.

Заключение
В ходе работы была разработана и спроектирована форма для производства однослойных зубных щёток. Работа состояла из нескольких частей: конструирование самой формы и проведение прочностных расчётов.
Вследствие, того, что толщина изделия не равномерна по его длине, и оно является толстостенным, выбрали горячеканальную систему. Для неё был разработан коллектор и подобраны многоточечные сопла (инжектора). Для удобства извлечения предусмотрели 2 линии разъёма, а также зацепы и тяги для возврата системы в исходное положение при смыкании. Так же специально для моего изделия была разработана обойма знаков, для оформления отверстий под щетинки зубной щётки.
Прочностной расчёт заключался: в расчёте опорных плит на смятие, расчёте направляющей колонки на изгиб и болтов на срез. Все расчёты удовлетворяют заданным требованиям и не превышают стандартные допуски для каждого вида расчётов.
Дата добавления: 21.06.2013
РП 448. ПС Система пожарной сигнализации Ромитанского филиала НБ ВЭД РУ | AutoCad

Общие данные
Пояснительная записка
Структурная схема
План расположения оборудования и проводок на 1-м этаже
План расположения контрольного оборудования и проводок в комнате охраны
План расположения оборудования и проводок на 2-м этаже
План расположения проводок 220VAC на 1-м этаже
План расположения проводок 220VAC на 2-м этаже и гараже
Общая типовая схема внешних соединений контрольного оборудования
Типовые схемы подключения пожарных извещателей к БСШ8-И
Схема распределительного шкафа ЩРН-18(З)
Дата добавления: 02.07.2013
РП 449. ОВ ВК Капитальный ремонт 3-х этажной школы г. Алексеевка Белгородской обл. | AutoCad


Общие данные.
Отопление. План подвала.
Отопление. План 1-го этажа.
Отопление. План 2-го этажа.
Отопление. План 3-го этажа.
Схема системы отопления.
Узел управления.
Вентиляция. Кондиционирование. План 1-ого этажа.
Вентиляция. План 2-ого этажа.
Вентиляция. План 3-ого этажа.
Схемы систем вентиляции.
Дата добавления: 15.07.2013
РП 450. ВК ОВ ТХ Станция очистки воды и насосная II подъема в Тюменской области | AutoCad

Из артезианской скважины исходная вода на очистку подается по двум водоводам диаметром 150 мм. Давление на входе не менее 0,2МПа.
Предварительно вода аэрируется в смесительном устройстве, путем подачи воздуха компрессорной установкой. В результате аэрации происходит окисление ионов железа и переход его в гидроокись.
Растворенный в воде кислород удаляется при прохождении воды через оксидатор.
Гидроокись железа улавливается на фильтрах первой ступени и остаточное содержание железа в осветленной воде составит менее 0,1 мг/л.
Далее вода направляется на струйный дегазатор, в котором происходит процесс удаления из воды сероводорода и нейтрализация агрессивной углекислоты.
Промежуточными насосами марки CR32-3-2 из емкости дегазатора вода подается на вторую ступень фильтрации, с угольной загрузкой фильтров для удаления из нее марганца, привкусов, запахов и улучшения вкусовых качеств воды.
Для поддержки процесса удаления марганца в очищаемую воду вводится раствор перманганата калия. В состав станции дозирования НМ 4-100 Е входит дозирующий насос производительностью 4,3 л/ч.
Очищенная вода обеззараживается хлором, содержащимся в связанном виде в растворе гипохлорита кальция. Реагент предварительно растворяется в баке, затем дозируется насосами-дозаторами производительностью 4,3 л/ч.
Очищенная и обеззараженная вода под остаточным напором направляется в резервуары чистой воды.
Для удаления, скапливающихся в фильтрующей загрузке загрязнений, выполняется водовоздушная промывка обратным током воды.
Промывка осуществляется ручным пуском со щита автоматического управления.
Система обратной промывки фильтров состоит из насоса марки CR 64-1-1, Q=120м3/час и воздуходувки производительностью 180 м3/ч. Два фильтра I ступени (для удаления из воды железа) промываются 2-3 раза в неделю каждый, в зависимости от перепада давления на фильтре. Сначала выполняется 10 минутная продувка воздухом, затем воздух с водой в течении 10 мин. и 10 мин. промывка водой.
Промывка 2-х фильтров II ступени (для удаления марганца) проводится аналогично фильтрам I ступени 1 раз в 2 недели.
Для промывки фильтров используется вода из резервуаров чистой воды. промывка фильтров производится последовательно при перепаде давления на фильтре более 0,5 кг/см2. промывка 2-4 фильтров может выполняться в течении 2-3 часов в ночное время при наименьшем разборе воды.
Промывная вода из фильтров подается в отстойник промывной воды. расход воды составляет ~20м3 на промывку одного фильтра; максимальное количество подаваемой промывной воды в отстойник составляет 80м3.
После отстоя не менее 20 часов, или 2-4 часа с применением ПАА, осветленная вода ~2/3 объема равномерно откачивается насосом Q=10м3/час и подается на I ступень очистки, что в общем объеме подготовленной воды составляет менее 25%. Предварительно осветленная вода обеззараживается ультрафиолетом с помощью УФ-стерилизатора, чтобы избегать нежелательного заражения фильтрующего материала болезнетворными бактериями, которые могут образоваться в отстойнике.

Общие данные.
План на отм. 0.000
Схема системы В1, системы К1

Общие данные.
План на отм. 0.000. Схема системы отопления.Схемы ВЕ1,2. Разрез 1-1. Узлы А,Б,В,Г,Д.

Общие данные.
План расстановки технологического оборудования
Технологическая схема очистки и подачи воды
Дата добавления: 24.07.2013


© Rundex 1.2
Cloudim - онлайн консультант для сайта бесплатно.