Добавить проект
Прочитать правила
Платный доступ
Авторизация:
Информация


7%20%20

Найдено совпадений - 5254 за 0.00 сек.


КП 4006. Курсовой проект - Речной гидроузел. Водосбросное сооружение | Компас
Введение    7
1.Исходные данные для проектирования    8
2.Гидравлический расчет водосливной плотины    9
2.1.Определение расчетного расхода    9
2.2.Определение размеров водосливных отверстий    9
2.3.Поверочный расчет водослива на пропуск льда    13
2.4.Очертание профиля водослива    13
2.5.Выбор основного гидромеханического оборудования    15
2.6.Расчет сопряжения бьефов    16
2.7.Определение размеров водобоя и рисбермы    20
3.Конструирование плотины    23
4.Назначение класса плотины    25
5.Фильтрационный расчет плотины    27
5.1.Выбор схемы и основных размеров элементов подземного контура    27
5.2.Фильтрационный расчет подземного контура плотины    27
5.3.Расчет фильтрационной прочности основания    30
5.4.Фильтрационный расход в основании    32
6.Статический расчет плотины    34
6.1.Предпосылки к статическому расчету    34
6.2.Сбор нагрузок, действующих на расчетную секцию плотины    35
6.2.1.Вертикальные нагрузки    35
6.2.2.Горизонтальные нагрузки    37
6.3.Проверка несущей способности основания плотины    41
6.4.Проверка устойчивости плотины против сдвига    42
7.Расчет сопрягающего устоя    45
7.1.Выбор схемы устоя    45
7.2.Фильтрационный расчет устоя    46
7.3.Статический расчет устоя    47
7.3.1.Сбор нагрузок, действующих на устой    47
7.3.2.Расчет устоя против сдвига    50
7.3.3.Проверка несущей способности основания    51
8.Объемы работ    53
Заключение    55
Список использованных источников    56

Исходные данные для проектирования содержатся в задании и представлены в виде:
- топографического плана района строительства Мурманского гидроузла (рисунок 1);
- кривой расходов в створе гидроузла (рисунок 2)
- характеристик грунтов основания (см. пункт 1.2 задания);
- характерных расходов в реке:
максимальный основной QP = 15000 м3/с;
максимальный поверочный QП = 15700 м3/с;
расход воды ГЭС QГЭС = 600 м3/с;
- характерных отметок:
нормальный подпорный уровень (НПУ) 193,00 м БС;
самый низкий уровень нижнего бьефа (СНУВ) 179,50 м БС;
отметка дна реки 170,00 м БС;
- состав основных сооружений гидроузла: 
глухая земляная плотина;
водосливная бетонная плотина;
здание ГЭС;
- тип рабочего затвора – плоский;
- тип мостовых переходов через водосливную плотину: автодорожный Г-7.


В настоящем проекте осуществлено конструирование профиля бетонной водосливной плотины на реке Оке, выполнено конструирование профиля плотины и элементов гашения энергии водного потока, фильтрационные расчеты и проверка фильтрационной прочности, статические расчеты на устойчивость против сдвига и проверка несущей способности основания, представлен вариант компоновки гидроузла, в составе которого проектируемая плотина и здание ГЭС, а также подсчитаны объемы основных работ.
В ходе выполнения проекта определены следующие данные:
1)Высота плотины 39,6 м, относится к II классу, плотина имеет 12 водосливных отверстия шириной 16 метра каждое.
2)Длина водобойного колодца 35 метров, рисбермы 65 м. Рисберма оканчивается ковшом-регулятором глубиной 4 м и длиной 15,6 м.
3)Условия фильтрационной прочности выполняются, фильтрационная прочность грунта основания обеспечена.
4)В состав напорного фронта включены следующие сооружения: здание ГЭС длиной 200 м и шириной 55 м, водосливная плотина длиной 224,8 м и шириной 40 м, грунтовые плотины высотой 40 метра и заложениями откосов - верховых 1:2,5, низовых 1:2,5.
Дата добавления: 07.11.2021
РП 4007. КР Пункт питания для животноводческого комплекса на 1200 голов в Республике Мордовия | AutoCad

По фундаменту устраивается монолитный цоколь до отметки 0,000, из бетона кл. В15 армированный арматурой класса А-III(А400) по ГОСТ 5781-82.
Колонны — профиль 160х5 по ГОСТ 30245-2012. Балки — двутавр №30Б1 по СТО АСЧМ 20-93. Связи — спаренные равнополочные уголки 100х8 по ГОСТ 8509-93.
Материал конструкций - сталь С245 по ГОСТ 27772-2015.
Проектирование стальных конструкций выполнено в соответствии со СП 16.13330.2011 "Стальные конструкции" и СП 20.13330.2016 "Нагрузки и воздействия".
Конструкции здания приняты следующие:
- стены - стеновые сэндвич-панели типа "Венталл-С3mm" толщиной 150мм и 100 мм с минераловатным утеплителем (НГ);
- перегородки - гипсокартонные по серии 1.031.9-2.00, в.1. Вид гипсокартонного листа.
- покрытие - кровельная сэндвич-панель "Венталл-К3t" толщиной 180мм и 150 мм.
По периметру всего здания устраивается отмостка шириной 1000 мм (ТД 52 с.2.110-1 вып.1) из асфальтобетона.
Вертикальная гидроизоляция - обмазка битумом.


Общие данные
Схема расположения монолитных фундаментов 
Фундамент ФМ1 
Фундамент ФМ1. Разрез 2-2 
Фундамент ФМ2 
Фундамент ФМ2. Разрез 2-2 
Фундамент ФМ3 
Фундамент ФМ3. Разрез 2-2 
Монолитный цоколь 
План на отм. 0,000 
Разрез 1-1 
План кровли 
Схема расположения элементов металлического каркаса 
Схема расположения кровельных прогонов 
Колонна К1 
Колонна К2 
Балка Б1 
Связь СВ1, СВ2, СГ1 
Схемы расположения стеновых прогонов 
Схемы раскладки стеновых панелей 
Спецификация к схеме расположения стеновых панелей 
Схема раскладки кровельных панелей 
Вход №1. План входа. Разрез 1-1...3-3. Схема каркаса входа 
Вход №1. Фундаменты 
Вход №1. Схемы раскладки стеновых панелей. Схемы расположения стеновых прогонов 
Вход №2. План входа. Разрез 1-1, 2-2. Схема каркаса входа 
Вход №2. Фундаменты 
Вход №2. Схемы раскладки стеновых панелей. Схемы расположения стеновых прогонов 
Стойка Ст1, Ст1*, Ст2, Ст2*, Ст3 
Свая Св1 
Свая Св2 
Узел установки стакана Ф400. Рама Р1
 
Дата добавления: 08.11.2021
КП 4008. Курсовой проект - 2-х этажный индивидуальный одноквартирный жилой дом с подвалом 13,3 х 8,2 м в Ленинградской области | AutoCad

Раздел 1. Пояснительная записка    3
Нормативно-технические документы, использованные при выполнении работы    3
Раздел 2. Схема планировочной организации земельного участка.    3
Раздел 3. Архитектурные решения    3
Раздел 4. Конструктивные и объемно-планировочные решения    4
Конструктивная схема здания    4
Конструктивные элементы    4
Фундамент    4
Стены    4
Колонны    4
Окна и двери    4
Перекрытия    5
Крыша    5
Лестница    5
Объемно-планировочные решения    5
Раздел 5. Сведения об инженерном оборудовании, о сетях инженерно-технического обеспечения, перечень инженерно-технических мероприятий, содержание технологических решений    5
Ведомость рабочих чертежей
План подвального этажа
План 1 этажа
План 2 этажа
План кровли
Фасад 1-5
Фасад 5-1
Фасад А-B
Фасад B-A
Разрез 1-1
Схема заполнения оконных и дверных проемов


Высота этажа – 3 м.
Общая площадь – 230,93 кв. м.
Общая жилая площадь – 70,9 кв.м.


Сплошной фундамент в виде монолитной железобетонной плиты толщиной 300 мм.
Стены:
Подвал/цокольный этаж
Наружные стены: кирпич, 640 мм;
Внутренние стены: кирпич, 380 мм;
Перегородки: перегородки: кирпич, 120 мм.


Наружные стены: кирпич, 380 мм, утеплитель, 120 мм, облицовка из кирпича,120 мм;
Внутренние стены: кирпич, 380 мм;
Перегородки: перегородки: кирпич, 120 мм.


Наружные стены: кирпич, 380 мм, утеплитель, 120 мм, облицовка из кирпича,120 мм;
Внутренние стены: кирпич, 380 мм;
Перегородки: перегородки: кирпич, 120 мм.


Плиты перекрытия выполнены из монолитного железобетона, толщина 160 мм.
Форма крыши – четырехскатная. 
В доме предусмотрена две железобетонных одномаршевых п-образных лестниц с забежными ступенями.
Лестницы в пределах одного этажа имеют 1 марш.
 
Дата добавления: 09.11.2021
КП 4009. Курсовой проект - 9-ти этажное жилое здание из крупных сборных элементов 49,2 х 13,5 м в г. Новороссийск | AutoCad

Введение    4
1 Общая характеристика проектируемого здания    5
2 Объёмно-планировочное решение здания    6
3 Конструктивные решения здания    9
4 Теплотехнический расчёт    16
5. Акустический расчёт    23
6. Технико-экономические показатели    25
7. Инженерное оборудование    27
Заключение    29
Список литературы    30


Высота этажей составляет 3.0 м. Взаимосвязь этажей осуществляется с помощью сборной железобетонной лестницы и лифтовой шахты.
Здание имеет 1 вход.
В запроектированном 9-ти этажном жилом доме план типового этажа, согласно заданию, состоит из квартир:
двух однокомнатных квартир;
четырёх двухкомнатных квартир;
двух трёхкомнатных квартир.


Фундамент здания свайный, с диаметром свай 300мм.
Наружные стены выполнены из трёхслойных панелей из двух наружных плит и утеплителя между ними. 
Перекрытия выполнены сборные железобетонные, размером на «комнату», с толщиной несущей ж/б плиты 160 мм с опиранием по четырём сторонам, балконы образованы как консольные выступы от комнатных плит перекрытия.
В проектируемом здании применяются внутренние несущие стены, которые входят в состав объёмного блока, толщиной 100мм, перегородки входят в состав объёмного блока.
Крыша состоит из крупноразмерных железобетонных элементов. Кровля имеет рулонное покрытие и утепление. Водосток – внутренний организованный из астбестоцементных труб.
Для вертикальных коммуникаций предусмотрен объёмный блок с лифтовой шахтой с монтажом лифтовой установки грузоподъёмностью 630 кг и скоростью 1м/с. Машинное отделение лифта завершает лифтовую шахту.
В проектируемом здании применяется двухмаршевая лестница из сборных железобетонных элементов шириной 1200 мм. 
Вход в подъезд имеет широкую удобную лестницу, оборудованную поручнями. Слева от лестницы имеется пандус для детских колясок и маломобильных групп граждан. 


Строительный объем подземной части, Vстр.подз., м3    2045
Строительный объем надземной части, Vстр.надз., м3    18930
Строительный объем общий, Vобщ., м3    20975
Жилая площадь, Sжил., м2    3122
Общая площадь, Sобщ., м2    4345
K1 = Sжил/ Sобщ, м2/м2    0.72
K2 = Vобщ/Sобщ, м3/м2    4.83
 
Дата добавления: 09.11.2021
ДП 4010. Дипломный проект (колледж) - Здание суда 40,22 х 34,50 м в г. Астрахань | AutoCad, PDF

ВВЕДЕНИЕ 5
1. АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ РАЗДЕЛ 
1.1 Исходные данные для проектирования 8
1.2 Схема планировочной организации земельного участка 8
1.2.1 Технико-экономические показатели планировочной организации земельного участка11
1.3 Объемно-планировочное решение 11
1.4 Технико – экономические показатели здания 14
1.5 Наружная и внутренняя отделка 15
1.5.1 Наружная отделка 15
1.5.2 Внутренняя отделка 17
1.6 Интерьер 19
1.7 Мероприятия для мобильных групп населения 21
2. КОНСТРУКТИВНЫЙ РАЗДЕЛ 
2.1 Конструктивное решение 25
2.2 Основание и фундаменты 25
2.3 Стены 26
2.4 Перекрытия 26
2.5 Перегородки 26
2.6 Крыша, кровля 27
2.7 Лестницы 27
2.8 Окна, двери 27
2.8.1 Окна 27
2.8.2 Двери 28
2.9 Полы, потолок 29
2.9.1 Полы 29
2.9.2 Потолок 29
2.10 Прочие конструкции 29
2.11 Краткие сведения об инженерно-техническом оборудовании здания 30
5. СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ 54


Первый этаж здания включает в себя помещения входной группы, холл, помещения для хранения документации, адвокатские помещения, а также С/У.
Второй этаж занимает зал суда и помещения для проведения судебных заседаний. 


Наружные несущие стены сделаны из кирпича толщиной 510 мм и внутренние несущие стены толщиной 380 мм.
Конструктивное решение фундамента – ленточный. 
В данном здании используется монолитное железобетонное перекрытие. 
В данном проекте перегородки выполнены из кирпича толщиной 120 мм.
Кровля плоская, благодаря чему можно эффективно использовать верхнюю часть здания. Основанием для крыши являются плиты из железобетона.
Для сообщения между этажами здания и в целях эвакуации в здании предусмотрены 3 одномаршевые металлические лестницы. 
Входные двери выполнены из алюминиевого профиля, размером 1200х2100 и 900х2100, а входные – из ПВХ. 
В проекте используются окна из ПВХ, размер которых зависит от назначения помещения.


1. Строительный объем –13843,17м3;
2. Площадь застройки – 225.3 м2;
3. Площадь общая – 1398,3м2;
4. Площадь полезная – 1129,1м2;
5. Объемный коэффициент – 9,9 %;
6. Планировочный коэффициент – 0,807%.
Дата добавления: 10.11.2021
КП 4011. Курсовой проект - 2-х этажный одноквартирный жилой дом 16,03 х 11,64 м в г. Кропоткин | ArchiCAD

Введение    3
1 Объемно-планировочные и конструктивные решения    4
2 Технико-экономические показатели объемно-планировочных решений    6
3 Санитарно-техническая часть    6
4 Электротехническая часть    7
5 Теплотехнический расчет    8
Заключение    12
Список литературы    13



Наружные стены здания комплексной конструкции.
Толщина стены – 360 мм.
1. Цементно-песчаный раствор, 20 мм.
2. Перлитобетон ρ=1200 кг/м3, 190 мм
3. Плиты минераловатные из каменного волокна ρ=60 кг/м3, 70 мм
4. Цементно-песчаный раствор 90 мм
Внутренние стены:
- тип 1: из кирпича толщиной 380 мм.
- тип 2: из кирпича толщиной 120 мм.
Междуэтажные перекрытия приняты из многопустотных плит перекрытия толщиной 200 мм.


Площадь застройки 203.64 м2
Общая площадь здания 280.92 м2
Полезная площадь 270.34 м2
Строительный объем: 1569 м3
Количество этажей 2 этажа

 
Дата добавления: 10.11.2021
КП 4012. Курсовой проект - ОиФ 9-ти этажного дома в г. Анадырь | AutoCad

1. Исходные данные
1.1 Характеристика строительной площадки
1.2 Краткая характеристика проектируемого объекта
2. Инженерно-геологические изыскания
2.1 Определение физико-механических характеристик грунта
2.2 Заключение о площадке строительства
3 Выбор глубины заложения подошвы фундамента
4 Сбор нагрузки на фундамент
5. Расчет ленточного фундамента
5.1 Требуемая ширина фундамента
5.2 Расчет осадок ленточного фундамента
6.Проектирование свайного фундамента
6.2 Проверка прочности грунта под нижним концом сваи
6.3 Расчет осадки фундамента по методу послойного суммирования
7. Технико-экономическое сравнение вариантов фундамента
Список литературы


Начало работы: август
Район строительства: г. Анадырь (9 этажей, с подвалом 3 м; без технического этажа)
Высота здания 25,52 м, с размерами в плане 24,06 х 13,04 м, количество этажей 9, высота этажа (от пола до потолка) -  2,78 м; имеется подвал - 3 м.
Конструктивная схема - бескаркасная, с поперечными несущими стенами с опиранием панелей перекрытий по двум сторонам.  
Стены наружные - кирпичные из полнотелого глиняного керамического кирпича М-75 толщиной 380 мм с дополнительным утеплением базальтовым утеплителем толщиной 100 мм. Внутренняя отделка - высококачественная штукатурка толщиной 20 мм, фасад выполнен из керамогранитных плит по технологии «Вентилируемый фасад»; 
Внутренние стены - кирпичные из полнотелого глиняного керамического кирпича М-75 толщиной 380 мм и внутренней отделкой из высококачественной штукатурки толщиной 20 мм; Перекрытия - сборные железобетонные панели с круглыми пустотами толщиной 220 мм типа 1ПК или 2ПК; Продольные стены с оконными проемами 1,4х1,2 м; Торцевые наружные стены -"глухие";                               
 
Наименование грунта:
1.Заторфованный грунт     
2.Песок мелкий средней плотности водонасыщенный
3.Суглинок мягкопластичный    
4.Глина полутвердая 
Дата добавления: 10.11.2021
ДП 4013. Дипломный проект - 7-ми этажная гостиница 30,52 х 21,54 м в г. Астрахань | AutoCad, PDF

ВВЕДЕНИЕ    4
1.АРХИТЕКТУРНО – ПЛАНИРОВОЧНЫЙ РАЗДЕЛ    6
1.1 Характеристика района строительства    6
1.2 Генеральный план и благоустройство территории строительства    6
1.3 Объемно-планировочное решение здания    8
1.4 Конструктивное решение здания    8
1.5 Инженерно-техническое оборудование здания    10
1.6 Теплотехнический расчет наружной стены    12
1.7 Теплотехнический расчет покрытия    15
2.РАСЧЕТНО – КОНСТРУКТИВНЫЙ РАЗДЕЛ    19
2.1 Исходные данные    19
2.2 Сбор нагрузок    20
2.3 Расчет колонны    29
3.ТЕХНОЛОГИЯ, ОРГАНИЗАЦИЯ И ЭКОНОМИКА СТРОИТЕЛЬСТВА    32
3.1 Характеристика проектируемого здания или сооружения, объекта реконструкции. Условия осуществления строительства    32
3.2 Этапы строительства    33
3.3 Номенклатура и объемы строительно-монтажных работ    37
3.4 Выбор наиболее эффективной технологии выполнении строительных процессов    39
3.5 Описание принятых методов производства основных строительных работ    39
3.6 Определение трудоемкости работ и времени работы машин и механизмов    48
3.7 Потребность в основных конструкциях, материалах и полуфабрикатах    53
3.8 Технологическая карта    54
3.8.1 Область применения    54
3.8.2 Технология и организация выполнения работ    54
3.8.3 Требования к качеству и приемке работ    55
3.8.4 Потребность в ресурсах    57
3.8.5 Составление калькуляции трудовых затрат    59
3.8.6 Технико-экономические показатели по технологической карте    60
3.9 Календарное планирование строительно-монтажных работ    61
3.9.1 Обоснование потребности строительства в основных строительных машинах, механизмах, транспортных средствах    61
3.10. Стройгенплан    62
3.10.1 Определение требуемых параметров крана    62
3.10.1 Расчет складских помещений и площадок    66
3.10.2 Проектирование санитарно-бытового и административного обслуживания работающих    67
3.10.3 Проектирование временного водоснабжения и электроснабжения    69
3.10.4 Расчет временного водоснабжения    70
3.11 Экономика строительства    72
3.12. ТЭП    72
ЗАКЛЮЧЕНИЕ    73
СПИСОК ЛИТЕРАТУРЫ    74


Размеры в плане: в осях 1-8 - 30,52м; в осях А-Д – 21,54 м
Площадь застройки -  657,4 м2
На 1-м этаже расположены 4 номера для инвалидов, помещения пищевого блока, а также бар на 40 человек. На последующих этажах расположены гостиничные номера. 
Всего в гостинице предусмотрено 82 номера.
Уровень гостиницы приравнён к трем звездам. 
В здании запроектировано две лестничные клетки. Лестницы устроены двух маршевыми из монолитного железобетона по серии 1.151.1-6. Наружные стены выполнены из кирпича толщиной 380мм с утеплителем ROCKWOOL– 120 мм. 
Здание выполнено из монолитных железобетонных конструкций и имеет колонную конструктивную систему. Несущими конструкциями существующего здания являются монолитные железобетонные колонны сечением 400х400мм из бетона класса В25. 
 Основными несущими элементами здания являются монолитные железобетонные колонны и монолитное безбалочное перекрытие в виде гладкой плиты. Устойчивость конструкций обеспеченна жестким соединением перекрытия с колонной и наличием самонесущих наружных кирпичных стен здания.  
Под колонны каркаса запроектирован монолитная фундаментная плита. Высота плиты – 0,5м. Подошва плиты расположена на отм. -1,300. Плита выполнена из бетона В20. Под наружные самонесущие стены укладываются блоки ФБС.
Перекрытия и покрытие выполнены из монолитного железобетона толщиной 200мм. 
Диафрагмы жесткости расположены в осях 4-5, В-Г. Они служат для увлечения несущей способности каркаса здания, образуя ядро жесткости. Диафрагмы жесткости выполняются из бетона В20 и имеют толщину 180 мм.
Крепление кирпичных перегородок к стенам и перекрытиям выполняем по серии 2.230-1 в.5. При кладке стен в дверных и оконных проемах заложить антисептированные деревянные пробки не менее 2х с каждой стороны во внутреннем слое. В стенах, перегородках и перекрытиях пробить отверстия для электропроводки диаметром до 70мм.
Перемычки сборные железобетонные по ГОСТ 948-84 серии: Серия 1.038.1-1 в.1.
Основные конструктивные элементы крыши:
Наслонные стропила, основные элементы которых – стропильные ноги, изготовленные из пиленых лесоматериалов с влажностью древесины <23 %. Элементы стропил, соприкасающиеся со стенами антисептируются и изолируются 2-мя слоями толя.
Стропильные ноги опираются на настенные брусья – мауэрлат сечением 150х150 мм. По центру стропила поддерживаются системой подкосов сечением 150х150 мм., которые в свою очередь опираются на лежень 150х150 мм, уложенные на несущую конструкцию перекрытия.
Стропильные ноги затягиваются скруткой из проволоки, прочно закрепленной ершом или повернутой скобой в стене или мауэрлате, что обеспечивает пространственную конструкцию крыши.
Оконные проемы приняты исходя из максимального освещения внутренних помещений здания. Остекление принято индивидуального изготовления.


В итоговой аттестационной работе разработаны необходимые разделы проекта строительства 7-ми этажной гостиницы в г. Астрахань.
В архитектурно-строительном разделе представлены решения по схеме организации, функциональному зонированию, объемно-планировочные решения, конструктивные решения, решения инженерно-технического оборудования, выполнен теплотехнический расчет ограждающих конструкций стен и покрытия.
В конструктивном разделе выполнен сбор нагрузок на все элементы,  при помощи программного комплекса Лира был выполнен расчет монолитных перекрытий здания, выполнен подбор арматуры. Также, был произведен расчет колонны. Результаты расчетов представлены в виде эпюр и таблиц.
В разделах технология, организация и экономика строительства, на основании полученных данных по разработанным разделам был определен состав и объем работ и их технологическая последовательность, определены строительные машины и механизмы, состав бригад необходимых для выполнения работ, разработан календарный план работ и строительный генеральный план, технологическая карта.
В экономическом разделе была посчитана сметная стоимость строительства проектируемого здания по состоянию на 3 кв.2019. 
Также были разработаны мероприятия по охране труда и жизни рабочих на стройплощадке.
В ходе работы были реализованы все поставленный задачи, в том числе по оптимизации строительных процессов.
Дата добавления: 11.11.2021
КП 4014. Курсовой проект - 12-ти этажный жилой дом 23,4 х 18,6 м в г. Ростов-на-Дону | AutoCad

Введение    3
1 Объемно-планировочное решение    4
2 Конструктивное решение здания    6
2.1 Фундамент    6
2.2 Стены    6
2.3 Перегородки    7
2.4 Перекрытия    7
2.5 Крыша    7
2.6 Лестницы    8
2.7 Окна    8
2.8 Двери    9
2.9 Полы    9
3 Наружная и внутренняя отделка здания    11
4 Инженерное оборудование    12
5 Технико-экономические показатели    13
Список использованных источников    14


Здание имеет 12 этажей.
Высота жилых этажей 2.8м.
Вход в здание осуществляется через крыльцо. Сообщение между этажами осуществляется посредством двухмаршевой лестницей. Ширина марша 1200 мм, расстояние между маршами 200 мм. Спуск по лестнице осуществляется по часовой стрелке.
Входы в квартиры осуществляются с общей площадки. На всех жилых этажах располагаются три однокомнатных и одна двухкомнатная квартира.


Представляет собой совокупность вертикальных и горизонтальных несущих конструкций здания, которая совместно обеспечивает его прочность, жесткость и устойчивость. 
Горизонтальные конструкции - перекрытия и покрытия здания воспринимают приходящие на них вертикальные и горизонтальные нагрузки и воздействия, передавая их поэтажно на вертикальные несущие конструкции. Последние в свою очередь передают эти нагрузки и воздействия через фундаменты основание грунта.
Здание запроектировано согласно СП 54.13330. 2011 (СНиП 31.01-2003) Здания жилые многоквартирные. 
Запроектирован свайный фундамент.  
Толщина наружных стен 510 мм с утеплителем. 
Раствор кладочный цементно-песчаный М75 
Состав наружной стены: внутренняя несущая верста 380 мм, утеплитель минераловатные плиты 130; наружная облицовочная верста 120 мм. 
Внутренние стены кирпичные сплошные толщиной 250 мм.
Кирпич силикатный М 125 F 35 (ГОСТ 379-95), плотность 1800 кг/м
Раствор кладочный цементно-песчаный М 75
Перегородки межкомнатные толщиной 120 мм выполняются из силикатного кирпича ГОСТ 530-95 М75 на цементно-песчаном растворе М50/
Для устройства перекрытий используем монолитные железобетонные плиты перекрытия толщиной 160 мм. 
Для устройства оконных и дверных проемов применяем железобетонные перемычки по ГОСТ 948-84. Материал изготовления перемычек - бетон марки В40.
Для устройства перекрытий используем монолитные железобетонные плиты перекрытия толщиной 160 мм. 
Для устройства оконных и дверных проемов применяем железобетонные перемычки по ГОСТ 948-84. Материал изготовления перемычек - бетон марки В40.
Лестничная клетка запланирована как внутренняя повседневной эксплуатации, П-образной формы из железобетонных элементов. Лестница двухмаршевая с опиранием на лестничные площадки. Уклон лестниц 1:2. Ширина марша - 1200 мм, расстояние между маршами 200 мм, проступь - 300 мм, подступенок - 140 мм.


Этажность    12
Жилая площадь квартир жилого дома    1444,8
Подсобная площадь жилого дома    1909,2
Общая площадь квартир жилого дома    3354,0
Площадь этажа жилого здания    386,1
Площадь застройки здания    420,8
Строительный объем здания    14 800
Коэффициент К1    0,43
Коэффициент К2    4,41


 
Дата добавления: 12.11.2021
КП 4015. Курсовой проект - ТК на монтаж железобетонного каркаса одноэтажного промышленного здания 48 х 72 м | AutoCad

Введение    3
I. ОБЛАСТЬ ПРИМЕНЕНИЯ ТЕХНОЛОГИЧЕСКОЙ КАРТЫ    4
1.1 Характеристика здания и его конструктивных элементов    4
1.2 Состав работ, вошедших в ТК    4
1.3Характеристика условий производства работ    5
II. ТЕХНОЛОГИЯ И ОРГАНИЗАЦИЯ ВЫПОЛНЕНИЯ РАБОТ    7
2.1Требования законченности подготовительных и предшествующих работ  7
2.2Указания по продолжительности хранения и запасу конструкций, изделий и материалов 8
2.3Калькуляция затрат труда    9
2.4Методы и последовательность выполнения работ    11
2.5График выполнения строительных процессов    13
2.6Численно-квалификационный состав звеньев    13
2.7Требования к качеству и приемке работ    15
III.ПОТРЕБНОСТЬ В РЕСУРСАХ    20
3.1Перечень машин, оборудования и технологической оснастки    20
3.2Потребность в материалах, изделиях и конструкциях    25
IV.ТЕХНОЛОГИЧЕСКИЕ РАСЧЕТЫ И ОБОСНОВАНИЯ    31
4.1Подсчет объемов работ    31
4.2Подбор кранов    31
V.ТЕХНИКА БЕЗОПАСНОСТИ, ОХРАНА ТРУДА И ПРОИЗВОДСТВЕННАЯ САНИТАРИЯ 33
VI.ПРОТИВОПОЖАРНЫЕ МЕРОПРИЯТИЯ    44
VII.ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ    45
ЗАКЛЮЧЕНИЕ    46
VIII.Технико-экономические показатели        46
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ    47


Картой предусмотрено выполнение следующих технологических процессов:
Технологической картой предусмотрено выполнение следующих технологических процессов:
1. Установка и заделка колонн двухветвевых в стаканы фундаментов КД2-1 (длиной 10,8 м, массой 5,3 т) и КП1-13 (длиной 10,8 м, массой 10,1 т):
а) изготовление и установка клиньев;
б) установка двухветвевых колонн в стаканы фундаментов зданий и сооружений;
в) замоноличивание колонн в стаканах фундаментов.
2. Установка вертикальных связей, масса портальных связей - 0,876 т, масса крестовых связей 0,5428 т.
а) установка и крепление вертикальных связей;
б) устройство подмостей;
в) антикоррозийная защита стальных конструкций.
3.Укладка подкрановых балок БКН6-6С длиной 6 м, массой 3,2 т
4. Укладка подкрановых балок БКН12-2С длиной 12 м массой 7,8 т
а) укладка подкрановых балок;
б) установка монтажных изделий;
в) сварка монтажных и закладных изделий.
5. Установка подстропильных ферм массой 10,5 т
а) установка сборных конструкций и сварка монтажных изделий
6.Установка стропильных балок 1БДР12-1 массой 4,7 т и 2БДР18-2 массой 10,4 т:
а) установка сборных конструкций и сварка монтажных изделий.
7. Укладка плит покрытия и заливка швов П/3х6-1 массой 2,6 т
а) установка и сварка монтажных изделий;
б) сварка закладных изделий на опорах;
в) устройство опалубки или прокладка рулонных материалов в швах;
г) укладка бетона в нормальные или уширенные швы;
д) устройство температурных швов.
8. Установка и заделка колонн фахверка в стаканы фундаментов КДФ156-1 длиной 16,8 м, массой 13,8 т
а) изготовление и установка клиньев;
б) установка колонн прямоугольного сечения в стаканы фундаментов зданий и сооружений;
в) замоноличивание колонн в стаканах фундаментов.
Учтены сопутствующие работы:
- установка, перестановка и уборка (снятие) подмостей, лестниц, кондукторов и монтажных приспособлений;
- транспортирование бетона, раствора и других материалов к месту укладки;
- устройство постели из раствора или бетона;
- срезка и загибание петель;
- очистка устанавливаемых конструкций, мест установки и сопряжений;
- устройство ограждений и других средств защиты, предусматриваемых правилами техники безопасности производства работ;
- другие вспомогательные работы, необходимые при производстве работ.
Учтены работы по установке монтажных изделий (накладок, рокладок), опорных консолей и арматуры, замоноличивание стыков и сопряжений, установке, разборке и смазке опалубки и другие работы.




Дата добавления: 13.11.2021
КП 4016. Курсовая работа - Коттедж 2-х этажный г. Сургут | Revit Architecture

высота 1-го и 2-го этажа — 3 м;
высота всего здания относительно уровня земли— 10,96 м;
высота всего здания относительно уровня фундамента — 11,96 м.
На первом этаже расположены зал, кухня-столовая, прихожая, санузел, жилая комната. На втором этаже расположены спальня, общая комната, санузел, холл и эркер.

СОДЕРЖАНИЕ:
Введение 5
1. Программа Autodesk Revit 6
2. Район строительства 7
3. Объемно-планировочное решение 8
4. Конструктивные решения 9
4.1. Фундамент 9
4.2.Стены 9
4.3. Внутренние стены и перегородки 10
4.4. Перекрытия 11
4.5. Крыша, кровля 12
4.6. Окна и двери 13
4.7. Вентиляция 16
4.8. Дымоход 16
5. 3D-модель 20
6. Архитектурно-строительный чертеж 21
Выводы 26
Список литературы 27

Расчет требуемой толщины стены осуществляется через нормативный показатель сопротивления теплопередачи. Данный показатель для ХМАО будет равен R=0,00035∙(20+9.9)∙257=4,089 Так как данный показатель представляет собой результат деления толщины материала на его коэффициент теплопроводности, для того чтобы узнать толщину стену, необходимо умножить коэффициент теплопроводности данной стены на показатель сопротивления теплопередачи.
Несущими стенами является пенобетон марки D600, коэффициент теплопроводности 0.14. Также используется облицовочный кирпич с коэффициентом 0.87 и штукатурка с таким же коэффициентом. Толщина штукатурки в сумме 50 мм. Толщина кирпича 120 мм. Тогда нормативный показатель сопротивления теплопередачи стены с вычетом пенобетона, штукатурки и кирпича

Запроектированы внутренние несущие стены и перегородки в виде пенобетона с кирпичной кладкой с двусторонним оштукатуриванием толщиной 420 мм, перегородки из железобетона имеют толщину 180 мм, что обеспечит достаточную звукоизоляцию более >43Дб. Конструкции данных стен и перегородок удовлетворяют нормативным требованиям прочности, устойчивости, огнестойкости, звукоизоляции.

В данном здании используется ленточный фундамент 1,5м, который лежит на глубине 1м(0,5м над уровнем земли). В данном регионе достаточно твердые почвы, поэтому глубже прокладывать необязательно.
Дата добавления: 11.11.2021
КП 4017. Курсовой проект - ППР нулевого цикла здания 72 х 12 м в г. Ижевск | AutoCad

Введение    3
Определение исходных данных    3
1.Определение объёмов земляных работ и технологических процессов по устройству котлована4
1.1. Определение технологических процессов по устройству котлована    4
1.2. Расчет объёмов земляных работ    4
1.3. Выбор транспортных средств для транспортирования лишнего грунта.    7
1.4 Определение технико-экономических показателей вариантных решений    8
1.5. Проектирование технологии и организации процессов по устройству котлована    12
2. Проектирование производства работ по устройству фундаментов    13
2.1 Определение состава процессов и объемов работ    13
2.2.1. Выбор стрелового крана    15
2.2.2. Расчёт интенсивности бетонирования и эксплуатационной производительности ведущей машины    15
2.3.1 Определение технико-экономических показателей вариантных решений по бетонированию фундаментов    16
2.3.2 Определение технико-экономических показателей вариантных решений по бетонированию стен подвала    17
3.Составление калькуляции трудовых затрат    18
4. Расчет технико-экономических показателей    19
4.1 Работы по устройству котлована    19
Список используемой литературы    22


Схема фундамента №9;
Размер здания в осях 72 х12 м;
Тип фундамента – плитный ;
Тип и плотность грунта: глина, γ = 2000 кг/м^3;
Расстояние до отвала: 5 км;
Скорость автосамосвалов: 40 км/ч;
Район строительства – г. Ижевск.


 
Дата добавления: 13.11.2021
КП 4018. Курсовой проект - Здание центральной трубной базы 84,0 х 30,5 м в г. Красноярск | AutoCad

Введение    4
1.Исходные данные    4
1.1.Характеристики климатического района    4
1.1.Характеристика рельефа    5
1.2.Характеристики огнестойкости и взрывопожаробезопасности    5
2. Технологическая часть    5
2.1.Направленность технологического процесса    5
2.2.Технологические зоны    5
2.3.Грузоподъёмное оборудование    5
2.4.Технологические зоны с агрессивными средами    6
3.Объемно-планировочные решения    6
3.1.Параметры проектируемого здания    6
3.2.Помещения и перегородки    6
3.3.Ворота и двери    7
3.5.Полы    8
3.6.Кровля    8
3.7.Расчёт количества водоприёмных воронок    8
3.8.Фасад    9
3.9.Генеральный план    9
4.Конструктивные решения    10
4.1.Обоснование выбора конструктивной схемы    10
4.2.Обеспечение геометрической неизменяемости и жесткости здания    10
4.3.Обоснование выбора материала каркаса    11
Список использованных источников    13


1.Прямоугольная форма;
2.Размеры в плане 84 х 30,5 м;
3.Высота до низа несущих конструкций покрытия 10,8 м; 
4.Одноэтажное;
5.Двухпролетное.












































Площадь застройки здания в пределах внешнего периметра наружных стен – 12655 м2.
Общая (полезная) площадь производственного здания – 2512,84 м2.
Строительный объем – 33306,0 м3. 
 
Дата добавления: 14.11.2021
КП 4019. Курсовой проект - ОиФ промышленного здания с АБК 48 х 120 м в г. Санкт-Петербург | AutoCad

1. Общее положение по проектированию    3
1.1. Анализ местных условий строительства    3
1.2. Анализ технологического назначения и конструктивного решения здания    4
2. Проектирование железобетонного фундамента стаканного типа под сборную железобетонную колонну промышленного здания    6
2.1. Выбор глубины заложения    6
2.2. Определение размеров подошвы фундамента    7
2.3. Определение размеров фундамента    9
2.4. Определение размеров фундамента    11
2.5. Расчет осадки основания фундамента    13
2.6.Конструирование фундаментов    14
2.7. Расчет на продавливание колонной дна стакана фундамента    16
3. Проектирование ленточного фундамента здания АБК под стену с подвалом.    17
3.1 Проектирование ленточного фундамента в стадии завершенного строительства.    17
3.2. Проверка ленточного фундамента в стадии незавершенного строительства    21
3.3. Расчет осадки основания фундамента    27
4. Проектирование фундамента из забивных свай под колонну промышленного здания    28
Сбор нагрузок    28
4.1. Выбор вида сваи и определение её размеров    29
4.2. Определение несущей способности сваи    29
4.3. Размещение сваи под ростверком и проверка нагрузок    30
4.4 Расчет осадки основания свайного фундамента    32
6. Выбор оптимального проектного решения фундамента    34
Список литературы    35


слой №1 (от 0 до 0,5м.) - почвенно-растительный; 
слой №2 (от 0,5 м до 6,3м) – суглинок желто-бурый, делювиальный.
слой №3 (от 6,3 м и до разведанной глубины 15,0 м.) – песок средней крупности.
Подземные воды не встречены до глубины 15,0 м. Их подъем не прогнозируется.
Статистический анализ грунтов выделил в толще грунта инженерно-геологические элементы (ИГЭ). Слой №1 объединяем со слоем №2 в один инженерно-геологический элемент ИГЭ-1, от поверхности до глубины 6,3 метров, т.к. слой №1 будет прорезан фундаментами.
Ниже находится песок средней крупности ИГЭ-2, глубину распространения которого принимаем от 6,3м до разведанной глубины 15,0 м. 






Дата добавления: 15.11.2021
КП 4020. Курсовой проект - ОиФ под 4-х этажное производственное здание 33 х 24 м | AutoCad

Исходные данные для проектирования
Физико-химический характер, геометрические параметры здания, схема здания
Оценка физико- механических свойств грунтов площадки строительства
Сбор нагрузок для заданных сечений
Расчет и конструирование фундамента мелкого заложения
Расчет осадки фундаментов мелкого заложения
Расчет и конструирование свайных фундаментов
Расчет основания свайного фундамента по деформациям
Расчет осадки условного фундамента

Исходные данные для проектирования
Число этажей: 4
Высота этажа: 3 м
Толщина стен: 0,38 м
Верхний слой: Плотность 1,78; Плотность частиц 2,76; Влажность 0,2; Влажность на границе пластичности 0,14; Влажность на границе текучести 0,35;
Модуль деформации 17,2; Удельное сцепление 21; Угол внутреннего трения 20.
Нижний слой: Плотность 1,98; Плотность частиц 2,69; Влажность 0,2; Влажность на границе пластичности 0,17; Влажность на границе текучести 0,32;
Модуль деформации 16,5; Удельное сцепление 21; Угол внутреннего трения 24.
Отметки устьев скважин: 1. 84
                                           2. 85
                                           3. 86
Расстояние между скважинами: 25 м
Мощность слоёв грунта по скважинам: Верхний слой 6 м
                                                                  Нижний слой не вскрыт
Глубина промерзания: 1,5 м

Рис. 1. Схема № 3
Физико-химический характер, геометрические параметры здания, схема здания
Плотность сухого грунта:
ρ_d=ρ/(1+W) ,г⁄(см^3 ).
Слой №1: ρ_d=1,78/(1+0,2)=1,48 ,г⁄(см^3 )
Слой №2: ρ_d=1,98/(1+0,2)=1,65 ,г⁄(см^3 )
Удельный вес грунта природного сложения:
γ=gρ,кН⁄м^3
Слой №1: γ=9,81*1,78=17,46 кН⁄м^3
Слой №2: γ=9,81*1,98=19,42 кН⁄м^3
Удельный вес твёрдых частиц:
γ_s=gρ_s,кН⁄м^3
Слой №1: γ_s=9,81*2,76=27,08 кН⁄м^3
Слой №2: γ_s=9,81*2,69=26,39 кН⁄м^3
Удельный вес сухого грунта:
γ_d=gρ_d,кН⁄м^3
Слой №1: γ_d=9,81*1,48=14,52 кН⁄м^3
Слой №2: γ_d=9,81*1,65=16,19 кН⁄м^3
Пористость:
n=1-ρ_d/ρ_s
Слой №1: n=1-1,48/2,76=0,46
Слой №2: n=1-1,65/2,69=0,39
Коэффициент пористости:
e=n/(1-n)
Слой №1: e=0,46/(1-0,46)=0,85
Слой №2: : e=0,39/(1-0,39)=0,64
Степень влажности:
S_R=(Wρ_s)/(eρ_w )
Слой №1: S_R=(0,2*2,76)/(0,85*1,0)=0,65 - влажный грунт
Слой №2: 〖 S〗_R=(0,2*2,69)/(0,64*1,0)=0,84 - насыщенный грунт


Число пластичности
I_p=W_L-W_P
Слой №1: I_p=0,35-0,14=0,21-глина
Слой №2: : I_p=0,32-0,17=0,15-суглинок
Показатель текучести:
I_L=(W-W_P)/I_P
Слой №1: I_L=(0,2-0,14)/0,21=0,3 – глина пластичная
Слой №2: I_L=(0,2-0,17)/0,15=0,2 – суглинок пластичный
Коэффициент пористости при влажности на границе текучести:
e_L=(W_L ρ_s)/ρ_d
Слой №1: e_L=(0,35*2,76)/1,48=0,65
Слой №2: e_L=(0,32*2,69)/1,65=0,52
Удельный вес насыщенного водой грунта:
γ_SAT=γ_S (1-n)+nγ_W ,кН⁄м^3
Слой №1: γ_SAT=27,08(1-0,46)+0,46*10= 19,22 кН⁄м^3
Слой №2: γ_SAT=26,39(1-0,39)+0,39*10= 19,99 кН⁄м^3




Рис. 2. Схема характерных сечений здания

Грузовая площадь для заданных сечений составит:
A_(1-1)=1n.m.*(5,0м/2+5,0м/2)=5,0 м^2
A_(2-2)=1n.m.*5,0м/2=2,5 м^2
A_(3-3)=(6,0м/2+6,0м/2)*(6,0м/2+6,0м/2)=36,0 м^2








Оценка физико- механических свойств грунтов площадки строительства

п. п. Физико-механические характеристики Инженерно-геологические элементы
ИГЭ-1 ИГЭ-2
1 Мощность слоя, м 6,0 не вскрыт
2 Влажность W, дол. ед. 0,2 0,2
3 Плотность грунта ρ, г/см 1,78 1,98
4 Плотность твёрдых частиц ρ_s, г/см^3 2,76 2,69
5 Плотность сухого грунта ρ_d, г/см^3 1,48 1,65
6 Удельный вес частиц γ_s, кН/м^3 27,08 26,39
7 Удельный вес при естественной
влажности γ, кН/м^3 17,46 19,42
8 Удельный вес сухого грунта γ_d, кН/м^3 14,52 16,19
9 Удельный вес с учётом взвешивающего
действия воды γ_sb, кН/м^3 - -
10 Пористость n, дол. ед. 0,46 0,39
11 Коэффициент пористости e (безразмерный) 0,85 0,64
12 Степень влажности S_R (безразмерный) 0,65 0,84
13 Граница текучести W_L, дол. ед. 0,35 0,32
14 Граница пластичности W_p, дол. ед. 0,14 0,17
15 Число пластичности I_P, дол. ед. 0,21 0,15
16 Показатель текучести I_L, дол. ед. 0,3 0,2
17 Удельное сцепление С, кПа 21 16
18 Расчетный угол внутреннего трения φ, град. 20 23
19 Модуль деформации Е, кПа 17,2 16,3
20 Степень неоднородности песков C_u - -
21 Полное наименование грунтов глина пластичная
влажная суглинок пластичный
насыщенный
22 Расчётное сопротивление грунтовR_0, кПа 260,25 264,2

Сбор нагрузок для заданных сечений
Сечение 1-1 Сбор нагрузок на обрез ленточного фундамента под внутреннюю несущую стену в бесподвальной частью здания

п. п. Вид нагрузки Нормативная
нагрузка,
кН/п.м.,
∑▒F_vo2 γ_f Расчетная
нагрузка,
кН/п.м.,
∑▒F_vo1
Постоянные
1 Вес конструкции кровли:
m=A_(1-1)*G_(кровл.)=5,0 м^2*0,7 кН⁄м^2 =3,5 кН 3,5 1,3 4,55
2 Вес плиты покрытия:
m=A_(1-1)*G_(покр.)=5,0 м^2*2,5 кН⁄м^2 ==12,5 кН 12,5 1,1 13,75
3 Вес стены:
m=1,0n.m.*t*h_(эт.)*N_(эт.)*γ_(кирп.кл.)=
=1,0n.m*0,38м*3,0м*4эт*
*18,0 кН⁄м^2 =82,08 кН 82,08 1,1 90,29
4 Вес плит перекрытия:
m=A_(1-1)*G_(перекр.)*(N_эт-1)=
=5,0 м^2*3,3 кН⁄(м^2*(4эт-1) )=49,5 кН 49,5 1,1 54,45
5 Вес конструкции пола:
m=A_(1-1)*G_(пола.)*〖(N〗_эт-1)=
=5,0 м^2*1,5 кН⁄(м^2*(4эт-1) )=22,5 кН 22,5 1,3 29,25
6 Вес перегородок:
m=t_(перег.)*L_(перег.)*h_(эт.)*(N_(эт.)-1)*γ_(кирп.кл.)=
=0,12м*(5,0/2+5,0/(2 ))м*3,0м*(4эт-1)*
*18,0 кН⁄м^2 =97,2 кН 97,2 1,1 106,92
Итого ∑▒〖=267,28〗 ∑▒〖=299,21〗
Временные
1 Полезная нагрузка на перекрытие:
m=A_(1-1)*G_(пол.перекр.)*(N_эт-1)=
=5,0 м^2*2 кН⁄(м^2*( 4эт-1) )=30 30 1,2 36
2 Вес снеговой нагрузки :
m=A_(1-1)*G_снега=5,0 м^2*2 кН/м^2 =10 10 1,4 14
Итого ∑▒〖=40〗 ∑▒〖=50〗
Всего ∑▒〖=307,28〗 ∑▒〖=349,21〗


Сечение 2-2 Сбор нагрузок на обрез ленточного фундамента под наружную несущую стену в подвальной частью здания

п. п. Вид нагрузки Нормативная
нагрузка,
кН/п.м.,
∑▒F_vo2 γ_f Расчетная
нагрузка,
кН/п.м.,
∑▒F_vo1
Постоянные
1 Вес конструкции кровли:
m=A_(2-2)*G_(кровл.)=2,5 м^2*0,7 кН⁄м^2 =1,75 кН 1,75 1,3 2,28
2 Вес плиты покрытия:
m=A_(2-2)*G_(покр.)=2,5 м^2*2,5 кН⁄м^2 ==6,25 кН 6,25 1,1 6,88
3 Вес стены:
m=1,0n.m.*t*h_(эт.)*N_(эт.)*γ_(кирп.кл.)=
=1,0n.m*0,38м*3,0м*4эт*
*18,0 кН⁄м^2 =82,08 кН 82,08 1,1 90,29
4 Вес плит перекрытия:
m=A_(2-2)*G_(перекр.)*N_эт=
=2,5 м^2*3,3 кН⁄(м^2*4 эт)=33кН 33 1,1 36,3
5 Вес конструкции пола:
m=A_(2-2)*G_(пола.)*N_эт=
=2,5 м^2*1,5 кН⁄(м^2*4 эт)=15 кН 15 1,3 19,5
6 Вес перегородок:
m=t_(перег.)*L_(перег.)*h_(эт.)*N_(эт.)*γ_(кирп.кл.)=
=0,12м*(5,0/2)м*3,0м*4 эт*
*18,0 кН⁄м^2 =64,8 кН 64,8 1,1 71,28
Итого ∑▒〖=202,88〗 ∑▒= 226,53
Временные
1 Полезная нагрузка на перекрытие:
m=A_(2-2)*G_(пол.перекр.)*N_эт=
=2,5 м^2*2 кН⁄(м^2*4 эт)=20 кН 20 1,2 24
2 Вес снеговой нагрузки :
m=A_(2-2)*G_снега=2,5 м^2*2 кН/м^2 =5 кН 5 1,4 7
Итого ∑▒〖=25〗 ∑▒〖=31〗
Всего ∑▒〖=227,88〗 ∑▒〖=257,53〗








Сечение 3-3 Сбор нагрузок на обрез фундамента под внутреннюю отдельно стоящую колонну в бесподвальной части здания

п. п. Вид нагрузки Нормативная
нагрузка,
кН/п.м.,
∑▒F_vo2 γ_f Расчетная
нагрузка,
кН/п.м.,
∑▒F_vo1
Постоянные
1 Вес конструкции кровли:
m=A_(3-3)*G_(кровл.)=36 м^2*0,7 кН⁄м^2 =25,2 кН 25,2 1,3 32,76
2 Вес плиты покрытия:
m=A_(3-3)*G_(покр.)=36 м^2*2,5 кН⁄м^2 ==90 кН 90 1,1 99
3 Вес балок покрытия и перекрытия:
m=L_(балк.)*b*h*N_(эт.)*γ_(ж.б.)==(6/2+6/2 )*0,6*0,4*4эт*27,0 кН⁄м^2 =155,52 кН 155,52 1,1 171,08
4 Вес плит перекрытия:
m=A_(3-3)*G_(перекр.)*(N_эт-1)=
=36 м^2*3,3 кН⁄(м^2*( 4 эт)-1)=356,4кН 356,4 1,1 392,04
5 Вес колонны:
m=a^2*h_эт*N_(эт.)*γ_(ж.б.)=
=〖0,4〗^2 м*3 м*4 эт*27 кН⁄м^2 =51,84 кН 51,84 1,1 57,03
6 Вес конструкции пола:
m=A_(3-3)*G_(пола.)*(N_эт-1)=
=36 м^2*1,5 кН⁄(м^2*(4 эт-1))=162 кН 162 1,3 210,6
7 Вес перегородок:
m=t_(перег.)*L_(перег.)*h_(эт.)*(N_(эт.)-1)*γ_(кирп.кл.)=
=0,12м*(6/2+6/2)м*3,0м*(4 эт-1)*
*18,0 кН⁄м^2 =116,64 кН 116,64 1,1 128,31
Итого ∑▒〖=957,6〗 ∑▒= 1090,82
Временные
1 Полезная нагрузка на перекрытие:
m=A_(3-3)*G_(пол.перекр.)*(N_эт-1)=
=36 м^2*2 кН⁄(м^2*(4 эт-1))=216 кН 216 1,2 259,2
2 Вес снеговой нагрузки :
m=A_(3-3)*G_снега=36 м^2*2 кН/м^2 =36 кН 72 1,4 100,8
Итого ∑▒〖=288〗 ∑▒〖=360〗
Всего ∑▒〖=1245,6〗 ∑▒〖=1450,82〗















Расчет и конструирование фундамента мелкого заложения
Расчет и конструирование фундамента на естественном основании
Глубину заложения подошвы фундамента принимаем -1,7 м от существующего уровня земли.
Предварительную площадь подошвы фундамента вычисляем по следующей формуле:
A_(пред.)=1п.м.*b_пред=(∑▒F_vo2 )/(R_0-γ_ср*d)=307,28/(259-20*1,7)=1,37 м^2≈1,4 м^2
b_(пред.)=A_(пред.)/(1п.м.)=1,4/(1п.м.)=1,4 м
Вычислим предварительное сопротивление грунта под подошвой фундамента:
R_пред=(γ_c1*γ_c2)/k =
=(1,2*1,1)/1 <0,51*1*1,4*17,46+3,06*1,7*13,97+5,66*21>=269,27 кПа
Уточняем размеры подошвы фундамента:
A_уточ=(∑▒F_vo2 )/(R_(пред.)-γ_ср*d)=307,28/(269,27-20*1,7)=1,31〖 м〗^2≈1,4 м^2
b_(уточ.)=(1,4〖 м〗^2)/(1,0 п.м.)=1,4 м
Уточняем величину расчётного сопротивления грунта под подошвой фундамента :
R_(уточ.)=(γ_c1*γ_c2)/k =
=(1,2*1,1)/1 <0,51*1*1,4*17,46+3,06*1,7*13,97+5,66*21>=269,27 кПа
Определим давление на грунт основания от веса сооружения, тела фундамента и грунта на его уступах:
P_02=(∑▒F_vo2 +G_(фунд.грунт))/A_ут =(307,28+47,6)/(1,0*1,4)=253,5 кПа
G_(фунд.грунт)=b_ут*1,0 n.m.*d*γ_ср=1,4 м*1,0 n.m.*1,7м*20 кН/м^3 =47,6 кН
Выполним проверку условия:
P_02=253,5 кПа Условие выполняется.



Рис. 3. Конструкция фундамента сечения 1-1


Расчет и конструирование фундамента мелкого заложения
Глубину заложения подошвы фундамента принимаем -2,7 м от существующего уровня земли.
Предварительную площадь подошвы фундамента вычисляем по следующей формуле:
A_(пред.)=1п.м.*b_пред=(∑▒F_vo2 )/(R_0-γ_ср*d)=227,88/(259-20*2,7)=1,11≈1,2 м^2
b_(пред.)=A_(пред.)/(1п.м.)=(1,2 м^2)/(1п.м.)=1,2 м
Определим глубину заложения подошвы фундамента:
d_1=h_s+(h_cf*γ_cf)/(γ_II^' )=0,7+(0,2*18)/13,97=0,96 м
Вычислим предварительное сопротивление грунта под подошвой фундамента:
R_пред=(γ_c1*γ_c2)/k =
=(1,2*1,1)/1 <0,51*1*1,2*17,46+3,06*0,96*13,97+(3,06-1)*1,8*13,97+5,66*21>=293,55 кПа
Уточняем размеры подошвы фундамента:
A_уточ=(∑▒F_vo2 )/(R_(пред.)-γ_ср*d)=227,88/(293,55-20*2,7)=0,95≈1,0 м^2
b_(уточ.)=(1,0〖 м〗^2)/(1,0 п.м.)=1 м
Уточняем величину расчётного сопротивления грунта под подошвой фундамента:
R_уточ=(γ_c1*γ_c2)/k =
=(1,2*1,1)/1 <0,51*1*1*17,46+3,06*0,96*13,97+(3,06-1)*2*13,97+5,66*21>=298,79 кПа
Определим давление на грунт основания от веса сооружения, тела фундамента и грунта на его уступах:
P_02=(∑▒F_vo2 +G_(фунд.грунт))/A_ут =(227,88+54)/(1*1)=281,88 кПа
G_(фунд.грунт)=b_ут*1,0 n.m.*d*γ_ср=1*1*2,7*20=54 кН
Выполним проверку условия: P_02=281,88 кПаРис. 4. Конструкция фундамента сечения 2-2

Расчет и конструирование фундамента на естественном основании
Глубину заложения подошвы фундамента принимаем -1,7 м от существующего уровня земли.
Предварительную площадь подошвы фундамента вычисляем по следующей формуле:
A_(пред.)=1п.м.*b_пред=(∑▒F_vo2 )/(R_0-γ_ср*d)=1245,6/(256-20*1,7)=5,61≈5,7 м^2
b_(пред.)=√(A_пред )=√5,7=2,39≈2,4 м
Вычислим предварительное сопротивление грунта под подошвой фундамента:
R_пред=(γ_c1*γ_c2)/k =
=(1,2*1,1)/1 <0,51*1*2,4*17,46+3,06*1,7*13,97+5,66*21>=281,03 кПа
Уточняем размеры подошвы фундамента:
A_уточ=(∑▒F_vo2 )/(R_(пред.)-γ_ср*d)=1245,6/(281,03-20*1,7)=5,04≈5,1〖 м〗^2
b_(уточ.)=√(A_уточ )=√5,1=2,26≈2,4 м
Уточняем величину расчётного сопротивления грунта под подошвой фундамента :
R_(уточ.)=(γ_c1*γ_c2)/k =
=(1,2*1,1)/1 <0,51*1*2,4*17,46+3,06*1,7*13,97+5,66*21>=281,59 кПа
Определим давление на грунт основания от веса сооружения, тела фундамента и грунта на его уступах:
P_02=(∑▒F_vo2 +G_(фунд.грунт))/A_ут =(1245,6+195,84)/(2,4*2,4)=250,25 кПа
G_(фунд.грунт)=b_ут^2*d*γ_ср=〖2,4〗^2*1,7*20=195,84 кН
Выполним проверку условия:
P_02=250,25 кПа Условие выполняется.



Рис. 5. Конструкция фундамента сечения 3-3
















Расчет осадки фундаментов мелкого заложения
Расчёт осадки фундамента сечения 2-2
Определим точки, а в них – бытовые и дополнительные давления:
z=0,4*b=0,4*1=0,4 м
Определим вертикальное напряжение от собственного веса грунта основания на уровне подошвы фундамента:
σ_(zg,0)=γ^'*d=17,46*2,7=47,14 кПа
Определим дополнительное давление от веса здания под подошвой фундамента (на уровне FL):
σ_(zp,0)=P_02=281,88 кПа
Определим вертикальные напряжения от собственного веса выбранного при отрывке котлована грунта на уровне подошвы фундамента:
σ_(zγ,0)=σ_(zg,0)=47,14 кПа
Определим вертикальные напряжения от внешней нагрузки в заданных точках:
σ_(zp,1)=α_1*σ_(zp,0)=0,881*281,88=248,34
σ_(zp,2)=α_2*σ_(zp,0)=0,642*281,88=180,97
σ_(zp,3)=α_3*σ_(zp,0)=0,477*281,88=134,16
σ_(zp,4)=α_4*σ_(zp,0)=0,374*281,88=105,42
σ_(zp,5)=α_5*σ_(zp,0)=0,306*281,88=86,26
σ_(zp,6)=α_6*σ_(zp,0)=0,258*281,88=72,73
σ_(zp,7)=α_7*σ_(zp,0)=0,223*281,88=62,86
σ_(zp,8)=α_8*σ_(zp,0)=0,196*281,88=55,25
σ_(zp,9)=α_9*σ_(zp,0)=0,19*281,88=53,56
σ_(zp,10)=α_9*σ_(zp,0)=0,175*281,88=49,33
Определим вертикальные напряжения от собственного веса выше расположенных слоёв грунта в заданных точках:
σ_(zg,1)=σ_(zg,0)+γ_1*h_1=47,14+17,46*0,4=54,12
σ_(zg,2)=σ_(zg,1)+γ_2*h_2=54,12+17,46*0,4=61,1
σ_(zg,3)=σ_(zg,2)+γ_3*h_3=61,1+17,46*0,4=68,08
σ_(zg,4)=σ_(zg,3)+γ_4*h_4=68,08+17,46*0,4=75,06
σ_(zg,5)=σ_(zg,4)+γ_5*h_5=75,06+17,46*0,4=82,04
σ_(zg,6)=σ_(zg,5)+γ_6*h_6=82,04+17,46*0,4=89,02
σ_(zg,7)=σ_(zg,6)+γ_7*h_7=89,02+17,46*0,4=96,00
σ_(zg,8)=σ_(zg,7)+γ_8*h_8=96+17,46*0,4=102,98
σ_(zg,9)=σ_(zg,8)+γ_9*h_9=102,98+17,46*0,1=104,73
σ_(zg,10)=σ_(zg,9)+γ_10*h_10=104,73+19,42*0,3=110,56
Определим вертикальные напряжения от собственного веса выбранного при отрывке котлована грунта в заданных точках:
σ_(zγ,1)=α_1*σ_(zg,0)=0,881*47,14=41,53
σ_(zγ,2)=α_2*σ_(zg,0)=0,642*47,14=30,26
σ_(zγ,3)=α_3*σ_(zg,0)=0,477*47,14=22,49
σ_(zγ,4)=α_4*σ_(zg,0)=0,374*47,14=17,63
σ_(zγ,5)=α_5*σ_(zg,0)=0,306 *47,14=14,42
σ_(zγ,6)=α_6*σ_(zg,0)=0,258 *47,14=12,16
σ_(zγ,7)=α_7*σ_(zg,0)=0,223 *47,14=10,51
σ_(zγ,8)=α_8*σ_(zg,0)=0,196 *47,14=9,24
σ_(zγ,9)=α_9*σ_(zg,0)=0,19 *47,14=8,96
σ_(zγ,10)=α_10*σ_(zg,0)=0,175 *47,14=8,25
Вычислим осадки i S основания в i -х слоях под подошвой фундамента:
S=β∑_(i=1)^n▒((σ_(zp,1)^ср-σ_(zγ,i)^ср )*h_i)/E_i
S_(0-1)=0,8 ((265,11-44,34)*0,4)/17200= 0,0041 м
S_(1-2)=0,8 ((214,66-35,9)*0,4)/17200= 0,0033 м
S_(2-3)=0,8 ((157,57-26,38)*0,4)/17200= 0,0024 м
S_(3-4)=0,8 ((119,79-20,06)*0,4)/17200= 0,0019 м
S_(4-5)=0,8 ((95,84-16,03)*0,4)/17200= 0,0015 м
S_(5-6)=0,8 ((79,5-13,29)*0,4)/17200= 0,0012 м
S_(6-7)=0,8 ((67,8-11,34)*0,4)/17200= 0,0011 м
S_(7-8)=0,8 ((59,06-9,88)*0,4)/17200= 0,0009 м
S_(8-9)=0,8 ((54,41-9,1)*0,1)/17200=0,0002 м
S_(9-10)=0,8 ((51,45-8,61)*0,3)/16300=0,0006 м

Выполним проверку условия: S=1,8 см≤S_u=8,0 см. Условие выполняется.



Расчёт осадки фундамента сечения 3-3
Определим точки, а в них – бытовые и дополнительные давления:
z=0,4*b=0,4*2,4=0,96 м
Определим вертикальное напряжение от собственного веса грунта основания на уровне подошвы фундамента:
σ_(zg,0)=γ^'*d=17,46*1,7=29,68 кПа
Определим дополнительное давление от веса здания под подошвой фундамента (на уровне FL):
σ_(zp,0)=P_02=250,25 кПа
Определим вертикальные напряжения от собственного веса выбранного при отрывке котлована грунта на уровне подошвы фундамента:
σ_(zγ,0)=σ_(zg,0)=29,68 кПа
Определим вертикальные напряжения от внешней нагрузки в заданных точках:
σ_(zp,1)=α_1*σ_(zp,0)=0,8*250,25=200,2
Дата добавления: 17.11.2021


© Rundex 1.2
Cloudim - онлайн консультант для сайта бесплатно.