Добавить проект
Прочитать правила
Платный доступ
Авторизация:
Информация


7%20%20

Найдено совпадений - 5254 за 1.00 сек.


ДП 886. Дипломный проект - Возведение 10 - ти этажного жилого дом в г. Ростов - на - Дону | AutoCad
ВВЕДЕНИЕ
1. АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЕ РЕШЕНИЯ
1.1. Исходные данные
1.2. Генеральный план и транспорт
1.3. Объемно-планировочное решение здания
1.4. Конструктивное решение здания
1.5. Теплотехнический расчет ограждающих конструкций
1.6. Наружная отделка
1.7. Внутренняя отделка
1.8 Противопожарные мероприятия и эвакуация людей
1.9. Инженерное оборудование
1.10. Теплотехнический расчет
1.10.1. Порядок расчета
1.10.2. Исходные данные для теплотехнического расчета
1.10.3. Результаты теплотехнического расчета. Выводы:
1.11. Технико-экономические показатели
1.11.1. Генеральный план
1.11.2. Здание
2. ОСНОВАНИЯ И ФУНДАМЕНТЫ
2.1. Введение
2.2. Инженерно-геологические условия строительной площадки
2.3. Определение нагрузки в уровне планировки
2.3.1. Определение предварительного значения ширины подошвы фундамента в0:
2.3.2. Проведем проверки в стадии незавершенного строительства
2.3.3.1Определение осадки
3. РАСЧЕТ И ПРОЕКТИРОВАНИЕ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ
3.1 Строительные конструкции
3.1.1. Плита
3.1.2. Второстепенная балка
3.1.3. Многопустотная сборная железобетонная плита
4. ТЕХНОЛОГИЧЕСКИЕ КАРТЫ
4.1. Технологическая карта на устройство свайного поля
4.1.1. Область применения технологической карты
4.1.2. Организация и технология строительных процессов
4.1.3. Численно-квалификационный состав звеньев
4.1.4. Контроль качества строительных работ
4.1.5. Техника безопасности
4.1.6. Технико-экономические показатели
4.1.7. Материально-технические ресурсы
4.1.8. Технологические расчеты и обоснования
4.1.9. Технико-экономические показатели
4.2 Технологическая карта на производство каменных работ и устройство плит перекрытий.
4.2.1 Характеристика здания и выполняемых конструкций
4.2.2 Организация и технология строительного процесса
4.2.3 Контроль качества работ.
4.2.4 Техника безопасности
4.2.5 Технико-экономические показатели
4.3. Технологическая карта на производство кровельных работ
4.3.1. Область применения
4.3.1.1.Характеристика выполняемых работ
4.3.1.2. Состав работ охватываемых картой
4.3.2. Организация и технология строительного процесса
4.3.2.1. Готовность работ, предшествующих производству кровельных работ
4.3.2.2.Указания по продолжительности хранения и запасу материалов
4.3.2.3. Методы и последовательность выполнения работ.
4.3.2.4. Требования к качеству и приемке работ
4.3.2.5. Калькуляция затрат труда
4.3.3. Техника безопасности и охрана труда
4.3.4. Материально-технические ресурсы
4.3.5. Технико-экономические показатели
4.4.Технологическая карта на производство штукатурных работ
4.4.1. Область применения
4.4.1.1.Характеристика выполняемых работ
4.4.1.2. Состав работ охватываемых картой
4.4.2.Организация и технология строительного процесса
4.4.2.1.Готовность работ, предшествующих производству штукатурных работ.
4.4.2.2.Указания по продолжительности хранения и запасу материалов
4.4.2.3. Методы и последовательность выполнения работ. Доставка и приготовление штукатурного раствора
4.4.2.4. Калькуляция трудовых затрат
4.4.2.5. Численно квалифицированный состав звеньев.
4.4.2.6. Контроль качества работ
4.4.2.7.Операционный контроль качества работ
4.4.2.8.Техника безопасности и охрана труда
4.4.3.Материально-технические ресурсы
4.4.4. Технико-экономические показатели
5. ОРГАНИЗАЦИЯ И ЭКОНОМИКА СТРОИТЕЛЬСТВА
5.1 Характеристика объекта и условий строительства
5.2 Методы выполнения работ по выполнению нулевого цикла
5.3 Выбор основного монтажного механизма
5.4 Мероприятия по охране труда
5.5 Календарный план
5.6 Стройгенплан
5.7 Расчет численности персонала
5.8 Обоснование потребности во временных зданиях и сооружениях
5.9 Расчет потребности в ресурсах: а) потребность в воде; б) потребность в электроэнергии; в) потребность в кислороде; г) потребность в сжатом воздухе; д) потребность в паре
5.10 Расчет потребности в складских площадях
6. СМЕТНАЯ ДОКУМЕНТАЦИЯ
6.1 Сводный сметный расчет
6.2 Объектная смета
7. БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ
7.1. Безопасность труда
7.1. 1. Мероприятия по безопасности труда
7.1.2. Мероприятия по безопасности труда при строительстве проектируемого объекта
7.2. Экологическая безопасность
7.2.1.Мероприятия по экологической безопасности, предусматриваемые при проектировании объекта
7.2.2. Мероприятия по экологической безопасности в ППР
7.3. РАСЧЕТНАЯ ЧАСТЬ
7.3.1 Расчет освещения помещения при производстве отделочных работ

Многоэтажный жилой дом проектируется в центральной части города Ростова-на-Дону, что обуславливает наличие в проектируемом здании встроенных офисных помещений.
В данном проекте, для достижения наибольшей гармонии и целостности композиции с соседними существующими зданиями, материалом для наружной отделки стен был выбран керамический кирпич.
Помещения отведенные под офисы располагаются на первом этаже, общей площадью 279.8 м2. Предусмотрены следующие помещения функционального назначения: рабочие комнаты, хозяйственные помещения, кладовые, помещения множительной техники, кабинет администратора.
Схема жилых этажей — индивидуальная планировка. Начиная со 2 этажа, запроектировано по три просторных трехкомнатных квартиры, объединенных холлом.
В секции запроектирована одна лестничная клетка с грузопассажирским лифтом и мусоропроводом. Лифт грузоподъёмностью 400 кг рассчитан на подъем 4 человек со скоростью 0,71 м/с.
Общее количество квартир равно 27.

Технико - экономические показатели:
Площадь:
Застройки 613.7 м2
Жилая 2004.3 м2
Общая 2900.4 м2
Летних помещений 415.8 м2
Приведенная общая 3012 м2
Объем:
Надземной части 6980.8 м3
Подземной части 721.7 м3
Всего здания 7702.5 м3


Канализация — хозяйственно-фекальная с выпуском в городскую сеть.
Теплоснабжение — центральное от городской ТЭЦ. Прокладка теплосети предусмотрена в непроходных сборных ж.б. каналах из лотковых элементов.
Отопление — центральное водяное с параметрами теплоносителя 80 – 95 0С. Система отопления принята вертикальная однотрубная, тупиковая, со смещенными зачищенными участками, с верхней разводкой подающей магистрали по чердаку и нижней разводкой обратной магистрали по подвалу. В качестве нагревательных приборов приняты чугунные радиа-торы М-140-АО.
Для обезвоздушивания системы отопления установлены проточные горизонтальные воздухо-сборные и воздушные краны.
Регулировка теплоотдачи нагревательных приборов осуществляется кранами КРП и КРТ, установленными на нижних подводах к радиаторам.
Все же изолированные трубопроводы и арматуру окрасить масляной краской за 2 раза.
Электроснабжение — от внешней трансформаторной подстанции напряжением 380/220 В. По степени надежности электроснабжение дома относится ко II категории.
В соответствии с климатическим районом строительства и температурой в летнее время проектом предусматривается возможность установки и подключения бытового кондиционера в каждой квартире.
Групповая квартирная электросеть выполняется из провода АППВС, расположенного в электроканалах. Сечение квартирной электросети 2,5мм2.
Лифт — электрический пассажирский грузоподъемностью 400 кг, вместимостью 5 чел. по ГОСТ 5746-83 (1986).
Слаботочные устройства — телефонизация от городской АТС, радиофикация от городской РТС, телевидение, охранная сигнализация и диспетчерская связь.
Мусороудаление – удаление мусора из квартиры осуществляется с помощью мусоропровода из стальных оцинкованных труб диаметром d=400 мм, на которых устанавливаются штампованные приемные клапана. Нижний конец мусоропровода заканчивается металлическим отводом, патрубком. Под входным отверстием мусоропровода устанавливается металлический контейнер емкостью 750 кг на колесах, который движется с помощью человека.
Удаление мусора осуществляется вывозом контейнеров с мусором к месту стоянки мусоропроводной машины, а чистый контейнер с машины подается в помещение сбора мусора.
Дата добавления: 22.03.2015
КП 887. Курсовой проект - Пластинчатый конвейер | Компас

Задание
1 ИСХОДНЫЕ ДАННЫЕ
2 ПРОЕКТИРОВАЧНЫЙ РАСЧЕТ
3 ПРОВЕРОЧНЫЙ РАСЧЕТ
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Исходные данные
Параметры трассы конвейера:
L1 = 25 м;
L2 = 10 м;
L3 = 20 м;
β = 18˚.
Транспортируемый груз –руда;
плотность, γ = 2,4 т/м3;
максимальный размер частиц, аmax = 100 мм;
процентное содержание аmax в пробе Ан = 15 %;
влажность груза – 12 %.
Производительность конвейера плановая, Qсут = 4800 т/сутки.
Производительность загрузочного устройства, Qmax = 5100 т/сутки.
Число рабочих дней в году, Д = 365 дней.
Число смен в сутки, nсм = 2.
Число часов в смене, tсм = 7 ч.
Температура окружающей среды: летом - + 32 ̊C;
зимой - – 20 ̊C.
Влажность воздуха – 63 %
Запыленность воздуха ¬– 18 мг/м3.
Коэффициент использования по рабочему времени КВ = 0,90.
Коэффициент неравномерности загрузки КН = 0,91.


Ширина полотна 1000 мм
Шаг тяговой цепи 400 мм
Скорость ковейера 0,6 м/с
Максимальная производительность 20 т/ч

Характеристика привода
Редуктор ЦЗУ-400; i = 100
Электродвигатель 4А200Л6У3; N = 30 квт; n = 980 об/мин
Зубчатая пердача m = 6; z1 = 18; z2 = 80
Клиноременная передача D1 = 100; D2 = 100 - 250
Дата добавления: 24.03.2015
КП 888. Курсовой проект - Проект фундамента цеха бытового обслуживания г. Гурьев | AutoCad

Реферат
Содержание
1 Исходные данные для проектирования
1.1 Анализ конструктивных особенностей здания
2 Анализ инженерно-геологических условий, свойств грунтов, оценка расчетного сопротивления грунтов
3 Расчет фундаментов мелкого заложения
3.1 Определение глубины заложения
3.2 Подбор подошвы
3.3 Расчет конечных осадок фундаментов мелкого заложения
4 Расчет свайных фундаментов
4.1 Проектирование свайных фундаментов
4.2 Расчет конечных осадок свайного фундамента
5 Указания по устройству гидроизоляции
6 Технико-экономические показатели вариантов фундаментов
6.1 Определение объема котлована
6.2 Технико-экономическое сравнение
7 Список используемой литературы

Здание – цех бытового обслуживания, бескаркасное. Несущие стены – продольные и поперечные из керамического кирпича, толщиной 380 (внутренние) и 510 мм.(внешние). Длина здания в продольных осях – 46 метров, в поперечных – 31 метр. В осях 4-6 имеется подвал (h=2.2 метра). Пространственная жесткость обеспечивается железобетонными плитами перекрытия. Здание состоит из трех блоков высотой 4.5 метра, 12,5 метров и 20 метров.


Площадка имеет небольшой уклон на юго-восток. Грунт площадки сложен тремя слоями грунтов. Первый слой – песок мелкий (№14), мощность ~ 2 метра, расположение – вклинивающее, второй (№3) – суглинок мягкопластичный, мощность ~ 3.5 метра, расположение – горизонтальное, третий (№10) – супесь пластичная, мощность – условно бесконечная, расположение – горизонтальное. Второй (№3) и третий (№10) слои грунта могут служить основанием для возведения фундаментов.

Определим глубину заложения с учетом следующих факторов:
1) Глубина сезонного промерзания грунтов с целью недопущения морозного пучения (климатический фактор) для города Гурьев (Атырау) равна 1,7 м.
2) Гидрогеологические условия площадки - уровень подземных вод на отметке глубины сезонного промерзания ( - 1,7 м.)
3) По инженерно-геологическим условиям как несущий слой выбираем супесь. Заглубляемся в этот слой минимум на 0,1-0,15м.
4) Конструктивные особенности сооружения (наличие подвала в осях 4-6)
С учетом заглубления в несущий минимум на 150 мм. выбираем глубину заложения подошвы фундамента для бесподвальной и для подвальной части здания равную d2=2,9 м.

Необходимо предусмотреть следующие типы гидроизоляции:
1. Гидроизоляция фундамента, находящегося ниже УПВ. На фундаментные блоки наносится гидроизоляционная мастика ТЕХНОНИКОЛЬ №21 (Техномаст). Поверх мастики крепится профилированная мембрана PLANTER standart.
2. Гидроизоляция стен от увлажнения атмосферными осадками. С наружной стороны стен на высоту 15-20 см от отмостки выполняется штукатурная или облицовочная изоляция.
3. Защита помещений от грунтовой сырости. По железобетонному подстилающему слою устраивается выравнивающая стяжка. Поверх наносится праймер битумный ТЕХНОНИКОЛЬ №01. Затем устраивается гидроизоляционный слой рулонного самоклеящегося материала Техноэласт БАРЬЕР. Поверх выполняют армированную цементно-песчаную стяжку.
 
Дата добавления: 26.03.2015
РП 889. АР КР ЭС ОВ ВК ПОС ПЗУ ООС ТХ ЭЭ ПБ Реконструкция промышленного здания в г. Тула | PDF

1) Степень огнестойкости производственного здания - II. Для перевода существующего Цеха из III степени огнестойкости во II следует предусмотреть огнезащиту основных несущих металлических конструкций. Для этого необходимо выполнить окрашивание металлических конструкций огнезащитной краской «Аквест-911» компании «Химсервис» г. Тулы .
2) Класс конструктивной пожарной опасности здания С0.
3) Класс функциональной пожарной опасности существующего и пристраиваемого Цеха - Ф 5.1
4) Класс функциональной пожарной опасности пристраиваемого АБК – Ф4.3
5) За условную отметку 0,000 принят уровень чистого пола первого этажа, соответствующий абсолютной отметке + 196,75.
6) Размеры существующего Цеха в осях 48х24м.
7) Размеры пристраиваемого АБК в осях 14,3х23,6м.
8) Размеры пристраиваемого Цеха в осях 15х75м.
9) Этажность существующего Цеха – 1.
10) Этажность пристраиваемого АБК– 3.
11) Этажность пристраиваемого Цеха – 1.
12) Количество этажей существующего Цеха – 1.
13) Количество этажей пристраиваемого АБК– 3.
14) Количество этажей пристраиваемого Цеха – 1.
15) Высота производственного здания (пожарно-техническая) – 9, 5 м.
16) Высота первого этажа АБК (от пола до пола) – 4,5м. Высота второго этажа АБК (от пола до пола) – 3,7м. Высота третьего этажа (от пола до верхней границы кровли) переменная – от 3,07м до 4,41м.
17) Высота этажа пристраиваемого Цеха (от пола до верхней границы кровли) – 9,20 м.
18) Площадь этажа производственного здания – 2684 м2. (В нее входят площадь этажа АБК – 390,9 м2 , площадь этажа пристраиваемого Цеха – 1130 м2, площадь существующего Цеха – 1164 м2)
19) Площадь расчетная производственного здания – 3133 м2. (В нее входят расчетная площадь АБК – 935,47 м2, расчетная площадь пристраиваемого Цеха – 1076 м2, расчетная площадь существующего Цеха - 1121 м2 .
20) Площадь общая производственного здания –3 464 м2. ( В составе : -общая площадь АБК – 1170м2, -общая площадь пристраиваемого Цеха – 1153 м2, -общая площадь существующего Цеха – 1141 м2.)
21) Строительный объем производственного здания после реконструкции – 30 750 м3. Конструктивная схема пристраиваемого АБК – каркасная, с жестким опиранием колонн на фундамент и жестким сопряжением ферм с колоннами.
Конструктивная схема пристраиваемого Цеха – каркасная, с жестким опиранием колонн на фундаменты и шарнирным сопряжением ферм с колоннами.
Межэтажная связь в АБК осуществляется за счет двух эвакуационных внутренних лестниц, состоящих из монолитных ж/б ступеней по металлическим косоурам.
Ширина марша -1200 мм.
Высота подступенка – 160 мм.
Ширина ступени – 280 мм.
 


Предисловие
Описание объекта реконструкции
Обоснование принятых объемно-пространственных и архитектурно-художественных решений.
Обоснование и описание внутренней отделки помещений
Описание архитектурно-строительных мероприятий, обеспечивающих защиту помещений от шума, вибрации и другого воздействия
Фасад Д2-А1. Фасад А-Д2.
Фасад 142-12. Фасад 11-9.
План на отм. 0,000
Фрагмент 1 плана на отм. 0,000
Фрагмент 3 плана на отм. 0,000
Фрагмент 1 плана на отм. +4,500
Эскиз ОК-3
Фрагмент 1 плана на отм. +8,200
Фрагмент 2 плана на отм. 0,000
Фрагмент 2 плана на отм. +3,000
Экспликация полов
Спецификация заполнения проемов. Ведомость перемычек. Спецификация сборных перемычек. Эскиз ОК-6. Эскиз Д1
Ведомость отделки помещений
 
Дата добавления: 26.03.2015
КП 890. Курсовой проект - Каток вибрационный ДУ-58 | AutoCad

Введение
1. Обоснование темы курсового проекта
1.1. Описание проектируемой конструкции и внесенных нее изменений
1.2. Назначение и рациональная область применения
2. Расчет основных параметров
2.1. Выбор основных параметров катка
2.2. Тяговый расчет
2.3. Баланс мощности
2.4. Выбор гидромотора привода вибратора
2.5. Расчет дебалансов
2.6. Расчет тормозов вибрационного катка
2.7. Техническая характеристика катка
3. Расчет на прочность
3.1. Расчет на прочность оси штока гидроцилиндра
3.2. Выбор и расчет амортизаторов 3.3. Расчет подшипников дебалансного вала
Заключение
Список используемых источников

Каток самоходный вибрационный ДУ-58 предназначен для уплотнения отсыпанных и предварительно спланированных слоев грунта и материалов дорожных оснований.
Вибрационные катки, как и статические, применяют при производстве ремонтных дорожных работ, а также при строительстве автомобильных дорог. Вибрационные катки с гладкими вальцами в последние годы находят все более широкое применение при уплотнении гравийных, щебеночных и асфальтобетонных смесей. Вибрационные самоходные катки по сравнению со статическими имеют меньшую металлоемкость, более маневренны и транспортабельны, при правильной организации работ обеспечивают требуемую плотность и ровность поверхности уплотняемых материалов. Самоходные вибрационные катки для уплотнения дорожных покрытий изготавливают преимущественно двухвальцовыми двухосными. В вибрационных двухвальцовых катках вибрационным может быть любой из вальцов или даже оба вальца. При ведущем вибрационном вальце резко снижаются условные коэффициенты трения и сцепления его с поверхностью движения, что снижает силу тяги по сцеплению и затрудняет передвижение на уклонах.
Если вибровальцом является ведомый валец катка, то затрудняется управляемость катком. Другим существенным недостатком вибрационных катков является трудность создания надежной и долговечной защиты оператора от вредного воздействия вибрации. В значительной мере указанные недостатки устранены в вибрационных катках с двумя вибровальцами, которые работают в противоположных фазах и являются и ведущими и управляемыми. При проектировании виброкатков желательно обеспечивать изменение возмущающей силы для использования их в наиболее выгодных режимах работы при уплотнения различных материалов.




















































Определены основные параметры машины, такие как выбор основных параметров катка, такие как, вес катка, диаметр вальца,ширина вальца, баланс мощности . Был выбран гидромотор привода вибратора, соответствующий полученным значениям. Была проведена расчет амортизаторов. На основе полученных параметров сделан тяговый расчет.
Дата добавления: 31.03.2015
КП 891. Курсовой проект - Проектирование производства строительно-монтажных работ бетоносмесительного цеха | Компас

Конструкции пролета 1 и 2
Ширина 12 м, длина 108 м. Высота от уровня чистого пола до низа стропильных конструкций 11,4 м. Шаг колонн 6 м. Транспортное оборудование представлено мостовым краном грузоподъемностью 8 т. Фундаменты самостоятельные под каждую колонну монолитные железобетонные столбчатые с одноступенчатой плитной частью высотой 18 м. Обрез фундаментов располагается на отметке -0,150. Колонн сечением 600х400 массой 7 т. Подкрановые балки – БКНБ6-4 массой 4,15 т двутаврового сечения высотой 1400 мм. Железобетонные стропильные балки 1БДР 18-2П массой 8,5 т. Наружные стены навесные стальные 3-х слойные панели типа «Сендвич». Кровля из рулонных материалов. Заполнение отдельных проемов с интервалом через 0,6м. Ворота раздвижные двупольные.
Площадка строительства со спокойным рельефом, перепад высот в пределах площадки не превышает 1м. Грунт – II группы.
Конструкции пролета 3
Ширина 24 м, длина 108 м. Высота от уровня чистого пола до низа стропильных конструкций 11,4 м. Шаг колонн 12 м. Транспортное оборудование представлено мостовым краном грузоподъемностью 20 т. Фундаменты самостоятельные под каждую колонну монолитные железобетонные столбчатые с одноступенчатой плитной частью высотой 18 м. Обрез фундаментов располагается на отметке -0,150. Колонн сечением 600х400 массой 7 т. По торцевым стенам устанавливаются фахверковые колонны сечением 200х200 массой с шагом 6 м, которые опираются на отдельные самостоятельные фундаменты. Подкрановые балки – БКНБ6-4 массой 4,15 т двутаврового сечения высотой 1400 мм. Железобетонные стропильные балки 1БДР 18-2П массой 8,5 т. Наружные стены навесные стальные 3-х слойные панели типа «Сендвич». Кровля из рулонных материалов. Заполнение отдельных проемов с интервалом через 0,6м. Ворота раздвижные двупольные. Площадка строительства со спокойным рельефом, перепад высот в пределах площадки не превышает 1м. Грунт – II группы.

Содержание:
1. Исходные данные для проектирования
2. Составление сетевой модели
3. Карточка определитель сетевого графика
4. Расчет сетевого графика в табличной форме
5. Мероприятия по охране труда
6. Мероприятия по охране окружающей среды
7. Мероприятия по пожарной безопасности
8. Библиографический список
Дата добавления: 31.03.2015
КП 892. Курсовой проект - Рабочий чертеж стальной фермы покрытия здания | Компас

1. Задание и исходные данные для курсового проекта
2. Расчетная схема фермы
3. Сбор нагрузок на ферму
4. Определение усилий в элементах фермы
5. Конструирование и расчёт элементов ферм
6. Расчет сварных соединений в ферме
7. Расчёт опорного узла фермы
8. Расчет прокладок
9. Узлы стальной фермы покрытия
10. Библиографический список



Дата добавления: 31.03.2015
КП 893. Курсовая работа - Автоматизированное проектирование железобетонных и каменных конструкций 4-х этажного здания г. Братск | AutoCad

1. Задание для проектирования
2. Расчет монолитного варианта перекрытия
3. Расчет плиты с овальными пустотами
4. Расчет неразрезного ригеля
5. Расчет сборного железобетонной колонны и центрально-нагруженного фундамента под колонну
6. Расчет кирпичного столба с сетчатым армированием
7. Список литературы

Исходные данные для расчета монолитного ребристого перекрытия с балочными плитами:
шаг колонн в продольном направлении, м 6,00
шаг колонн в поперечном направлении, м 6,20
врем. нормат. нагр. на перекрытие, кН/м2 4,0
пост. нормат. нагр. от массы пола, кН/м2 0,9
класс бетона монол. констр. и фундамента В20
класс арматуры монол. констр. и фундамента A-II
влажность окружающей среды 90%
класс ответственности здания I

Исходные данные для расчета сборной плиты перекрытия:
шаг колонн в продольном направлении, м 6,00
врем. нормат. нагр. на перекрытие, кН/м2 4.0
пост. нормат. нагр. от массы пола, кН/м2 0,9
класс бетона для сборных конструкций В25
класс предв. напрягаемой арматуры ВР-11
способ натяжения арматуры на упоры Эл.терм.
условия твердения бетона Естеств.
тип плиты перекрытия "овал."
вид бетона для плиты тяжелый
влажность окружающей среды 90%
класс ответственности здания I

Исходные данные для расчета неразрезного ригеля:
шаг колонн в продольном направлении, м 6,00
шаг колонн в поперечном направлении, м 6,20
число пролетов в поперечном направлении 3
врем. нормат. нагр. на перекрытие, кН/м2 4,0
пост. нормат. нагр. от массы пола, кН/м2 0,9
класс бетона для сборных конструкций В25
класс арматуры сборных ненапр. конструкций А-III
тип плиты перекрытия "овал."
вид бетона для плиты тяжелый
влажность окружающей среды 90%
класс ответственности здания I

Исходные данные для расчета колонны и монолитного фундамента:
высота этажа, м 3,60
количество этажей 5
класс бетона монол. констр. и фундамента В20
класс арм-ры монол. констр. и фундамента А-II
глубина заложения фундамента, м 1.60
усл. расчетное сопротивление грунта, МПа 0,30
Дата добавления: 31.03.2015
КП 894. Курсовой проект - Газоснабжение района г. Вологда | AutoCad

I район – 8-ми этажные здания
II район -2 этажные здания
Город застройки - Вологда, расположен севернее 58° с.ш., в соответствии с СНиП 2.07.01-89* актуализированная редакция, Приложение 4,табл.2 примем плотность населения на территорию микрорайона, чел/га, для климатических подрайонов с зоной средней и низкой степени градостроительной ценности территории, соответственно 350 и 200 чел/га.
 


Fз, га


II район -2 этажные
Город застройки - Вологда, расположен севернее 58° с.ш.
В соответствии с СНиП 2.07.01-89* актуализированная редакция, Приложение 4,табл.2 примем плотность населения на территорию микрорайона, чел/га, для климатических подрайонов с зоной средней и низкой степени градостроительной ценности территории, соответственно 350 и 200 чел/га

В данном курсовом проекте была разработана и рассчитана система газоснабжения района города Вологда. Определены расходы газа бытовыми, жилищно-коммунальными и промышленными потребителями. Произведен гидравлический расчет сетей высокого и низкого давлений, подобраны диаметры газопроводов. Подобрано оборудование ГРП.
Также была разработана и рассчитана система газоснабжения жилого дома. Была принята к установке запорно-регулирующая арматура и подобраны диаметры газопроводов, сети низкого и высокого давления.
Дата добавления: 31.03.2015
РП 895. ППР на кирпичную кладку стен в зданиях с ненесущими стенами | AutoCad

1. ЛИСТ ОЗНАКОМЛЕНИЯ ПЕРСОНАЛА С ПРОЕКТОМ ПРОИЗВОДСТВА РАБОТ
2. ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ
3. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
4. ОХРАНА ТРУДА
5. ПРОМЫШЛЕННАЯ БЕЗОПАСНОСТЬ
6. ПОРЯДОК ПРОИЗВОДСТВА РАБОТ
7. ВЕДОМОСТЬ ИНСТРУМЕНТОВ
8. ПЕРЕЧЕНЬ ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

ГРАФИЧЕСКАЯ ЧАСТЬ:
СХЕМА ВЫНОСНОЙ ПЛОЩАДКИ

Место установки выносной площадки утверждает производитель работ или начальник строительного участка.
Схему выносной площадки см. графическую часть Лист 1.
Технические характеристики выносной площадки:
• грузоподъемность не более 800 кг;
• длина 6000 мм;
• ширина 1500 мм;
• высота 1740 мм.
Монтаж (подъем) подвесной площадки выполнять с применение башенного кра-на, задействованного на объекте.
Строповку выносной площадки осуществлять с применением стропа 4 СК-2,0.
До начала выполнения работ необходимо выполнить следующее мероприятия:
• собрать и испытать выносную приемную площадку;
• установить временное стоечное ограждение по периметру перекрытия и сигнальное ограждение опасной зоны в месте установки грузоприемной площадки.
После установки площадки, или ее переустановки на новое место, необходимо провести ее испытания.
При испытаниях площадки необходимо руководствоваться требованиями соответствующих разделов СНиП III-4-80* и СНиП 12-03-2001*. Площадку подвергнуть статическим испытаниям пробным грузом, вес которого на 20% превышает ее грузоподъемность (20% перегрузки) с выдержкой не менее 1 час.
После испытаний произвести визуальный осмотр площадки. Остаточные деформации в металлоконструкции несущего каркаса и в стойках распорных не допускаются. Также не допускаются трещины в сварных швах свариваемых деталей, повреждения настила и другие побочные дефекты.
Результаты испытаний площадки должны быть оформлены соответствующим актом испытаний.
Дата добавления: 02.04.2015
КП 896. Курсовой проект - Способы производства газобетонных стеновых панелей | AutoCad

Избыток массы («горбушку») после схватывания смеси (через 3-6 ч) срезают специальными струнами. Для ускорения газообразования, а также процессов схватывания и твердения применяют «горячие» смеси на подогретой воде с температурой в момент заливки в формы около 40°С.
Тепловую обработку ячеистого бетона производят преимущественно в автоклавах в среде насыщенного водяного пара при температуре 175-200°С и давлении 0,8-1,3МПа. Автоклавы представляют собой герметически закрывающиеся цилиндры диаметром до 3,6 м и длиной до 32 м. Во влажной среде и при повышенной температуре кремнеземистый компонент проявляет химическую активность и вступает в соединение с гидроокисью кальция с образованием гидросиликатов кальция, придающих ячеистому бетону повышенную прочность и морозостойкость.
Автоклавную об
работку производят по определенному режиму с учетом типа и массивности изделий. Чтобы не появились трещины в изделиях, предусматривают плавный подъем и спуск температуры и давления (в течение 2-6 ч); время выдержки изделий при максимальной температуре составляет 5-8 ч.
Неавтоклавные ячеистые бетоны, изготовленные по литьевой технологии и твердевшие в нормальных условиях или пропаренные при атмосферном давлении (при температуре 80-100°С), значительно уступают автоклавным бетонам по прочности и морозостойкости. Литьевая технология ячеистого бетона, основанная на применении текучих смесей с большим количеством воды, имеет ряд недостатков. Готовые изделия имеют большую влажность 25-30%, поэтому у них большая усадка, вызывающая появление трещин. Изделия получаются неоднородными по толщине (по высоте формы) вследствие расслоения жидкой смеси, всплывания газовых пузырьков. Производственный цикл удлиняется из-за медленного газовыделения и схватывания смеси. Новые технологические методы позволяют смягчить или полностью устранить эти недостатки.
Вибрационная технология газобетона заключается в том, что во время перемешивания в смесителе и вспучивания в форме смесь подвергают вибрации.
Тиксотропное разжижение, происходящее вследствие ослабления связей между частицами, позволяет уменьшить количество воды затворения на 25-30% без ухудшения удобоформуемости смеси. В смеси, подвергающейся вибрированию, ускоряется газовыделение- вспучивание заканчивается в течение 5-7 мин вместо 15-50 мин при литьевой технологии. После прекращения вибрирования газобетонная смесь быстро, через 0,5-1,5 ч, приобретает структурную прочность, позволяющую разрезать изделие на блоки, время автоклавной обработки также сокращается. Все это повышает производительность предприятий и снижает себестоимость изделий из ячеистого бетона. Разработаны новые технологические приемы изготовления ячеистого бетона из холодных смесей (с температурой около 20°С) с добавками поверхностно-активных веществ и малым количеством воды. Такой газобетон на цементе после обычного пропаривания при атмосферном давлении достигает прочности автоклавного бетона, изготовленного по литьевой технологии. Замена автоклавной обработки пропариванием без ущерба для качества ячеистого бетона дает большой экономический эффект, так как отказ от дорогостоящего и сложного автоклавного хозяйства удешевляет и упрощает изготовление изделий. Принципы вибрационной технологии разработаны советскими учеными.
Резательная технология изготовления изделий из ячеистого бетона предусматривает формование вначале большого массива (объемом 10-12 м3, высотой до 2 м). После того как бетон наберет структурную прочность, массив разрезают в горизонтальном и вертикальном направлениях на прямоугольные элементы, а затем подвергают тепловой обработке. Полученные элементы калибруют на специальной фрезерной машине и отделывают их фасадные поверхности.
Из готовых элементов, имеющих точные размеры, собирают на клею плоские или объемные конструкции, используя стяжную арматуру. Таким путем получают большие стеновые панели размером на одну или две комнаты и высотой на этаж.
Резательная технология дает возможность изготовлять с большой точностью легкие сборные конструкции полной заводской готовности, что повышает качество монтажных работ и темпы индустриального строительства.
Раствор получают из вяжущего (цемента или воздушной извести) кремнеземистого компонента и воды, как и в технологии газобетона. Пену приготовляют в лопастных пеновзбивателях и центробежных насосах из водного раствора пенообразователей, содержащих поверхностно-активные вещества либо при помощи пеногенераторов. Применяют гидролизованную кровь (ГК), клееканифольный, смолосапониновый, алюмосульфо-нафтеновый и синтетические пенообразователи. Пенообразование вызывается понижением поверхностного натяжения воды на поверхности раздела "вода-воздух" под влиянием поверхностно-активных веществ, адсорбирующихся на поверхности раздела. Качество пены тем выше, чем больше «кратность», представляющая отношение начального объема пены к объему водного раствора пенообразователя. Пена должна быть прочной и устойчивой, т. е. не осаживаться и не расслаиваться по крайней мере в начальный период схватывания ячеистой массы. Стабилизаторами пены служат добавки раствора животного клея, жидкого стекла или сернокислого железа; минерализаторами же являются цемент и известь. Пенобетонную смесь на цементе или извести можно изготовлять в смесителях периодического действия. В пеногенераторе приготовляется пена, в растворосмесителе готовится цементно-песчаный или известково-песчаный раствор и приготовленная пена смешивается с растворной смесью. Полученную ячеистую массу заливают в формы. Перед термообработкой отформованные пенобетонные изделия выдерживают до приобретения необходимой структурной прочности, тогда изделия не растрескиваются при перемещении форм и для них не опасно расширение воздуха, находящегося в ячейках-порах, происходящее при тепловой обработке. Для сокращения времени выдержки и ускорения оборачиваемости форм добавляют хлористый кальций, поташ и другие вещества, ускоряющие структурообразование.
Прочность и объемная масса являются главными показателями качества ячеистого бетона. Объемная масса косвенно характеризует пористость ячеистого бетона: увеличивая пористость с 60 до 83%, можно снизить объемную массу с 1000 до 400 кг/м3. Поэтому зависимость свойств бетона от объемной массы, представленная на графике, выражает, в сущности, влияние пористости. Возрастание объемной массы ячеистого бетона с 300 до 1200 кг/м3 сопровождается, как видно из графика, закономерным увеличением его прочности и теплопроводности.
Рассмотрев технологии производства газобетонных стеновых панелей, выбираю литьевую технологию.
Известь и песок предварительно поступают на дробление. Затем цемент и наполнители поступают на помол в шаровую мельницу. С помольного отделения поставляется сырье, и в нужной дозировке происходит смешивание в газобетономешалке песчаного шлама, воды, цемента, извести и алюминиевой пудры. Готовая смесь выгружается в формы, заполняя их примерно наполовину. Известь начинает гаситься, выделяя тепло, - за полтора часа температура смеси доходит до 80. Алюминий взаимодействует с известью, выделяется свободный водород, и он поднимает эту смесь, которая полностью заполняет форму. Цемент под воздействием высокой температуры начинает схватываться; сферические ячейки, образованные свободным водородом, превращаются в заполненные воздухом поры (готовый продукт на 80 проц. состоит из мелких пор диаметром от 1, 5 до 3 мм). Структурная пористость газобетонных блоков обусловлена строго выдержанной технологией, и автоматизацией процесса. После того, как массив поднимется, он подвергается предварительному твердению в течение 60-120 минут для достижения первоначальной прочности.
Далее идет комплектация массивов на автоклавных телегах и в путь, для дальнейшей пропарки. В этих автоклавах масса созревает на протяжении 12-15 часов. В автоклавах под большим давлением (от 8 до 14 атмосфер) и температурой (+170-1900 С) происходит реакция, при которой известь связывается с песком тонкомолотым, и газобетон становится прочным, обретая нужные качества. И полученный прочный, морозоустойчивый (в 4 раза теплее кирпича), экологически чистый продукт далее идет на склад. По своим эксплуатационным свойствам он находится на втором месте после дерева. Его можно пилить, штробить и даже забивать в него гвозди.
После автоклавной обработки готовые панели устанавливаются на поддоны и вывозятся на склад.
Дата добавления: 05.04.2015
КП 897. Курсовой проект - Определение влияния зеленых насаждений (микрорайонного сада) на условия проживания в микрорайоне | AutoCad

Введение
Предпроектный анализ
1. Влияние антропогенных факторов на территорию застройки микрорайона
1.1. Влияние шумового загрязнения на территорию микрорайона
1.2. Влияние концентрации угарного газа на территорию микрорайона
1.3. Анализ комплексного влияния антропогенных факторов на территорию застройки
2. Влияние антропогенных факторов на территорию микрорайонного сада
1.4. Влияние шумового загрязнения на территорию микрорайонного сада
1.5. Влияние концентрации угарного газа на территорию микрорайонного сада
1.6. Анализ комплексного влияния антропогенных факторов на территорию микрорайонного сада
3. Влияние ландшафтно-рекреационной зоны (микрорайонного сада) на территорию застройки Проектирование ландшафтно-рекреационной зоны (микрорайонного сада)
1.7. Функциональное зонирование территории микрорайонного сада
1.8. Построение дендроплана (разбивочный чертеж)

Предпроектный анализ Площадь микрорайона в пределах красной линии – 25 га;
Градостроительная ценность территории – средняя;
Плотность населения – 180 чел/га;
Климатический подрайон – III Б;
Норма жилищной обеспеченности – 20 м2/чел.
Транспортная сеть:
1 – улица местного значения:
- Интенсивность транспортного потока N – 757 экп/ч;
- Средневзвешенная скорость Vср = 23 км/ч;
- Эквивалентный уровень шума LАЭкв = 70 дБА;
- Концентрация оксида углерода СО = 12,34 мг/м3;
2 – улица районного значения:
- Интенсивность транспортного потока N – 1300экп/ч;
- Средневзвешенная скорость Vср = 22 км/ч;
- Эквивалентный уровень шума LАЭкв 72,5дБА; - Концентрация оксида углерода СО = 20,29 мг/м3;
3 – улица общегородского значения:
- Интенсивность транспортного потока N – 3120экп/ч;
- Средневзвешенная скорость Vср = 40 км/ч;
- Эквивалентный уровень шума LАЭкв = 79,5 дБА; - Концентрация оксида углерода СО = 23,65 мг/м3;
4 – улица общегородского значения:
- Интенсивность транспортного потока N – 3120 экп/ч;
- Средневзвешенная скорость Vср = 40 км/ч;
- Эквивалентный уровень шума LАЭкв = 79,5 дБА;
- Концентрация оксида углерода СО = 23,65 мг/м3;
Микрорайонный сад – это озелененный участок внутри микрорайона предназначенный для повседневного пользования и должен располагаться в пределах пешеходной доступности = 500 м.
Микрорайонный сад отличается от других сегментов озеленения города тем, что он органично вклинивается в архитектурно-планировочную структуру микрорайона. Стилистически должен полностью гармонировать с территорией микрорайона.
 
Дата добавления: 06.04.2015
КП 898. Курсовой проект - Расчет конического редуктора | Компас

1. Кинематический расчет
2. Выбор материала и определение допускаемых напряжений
3. Расчет конической зубчатой передачи
4. Предварительный расчет валов
5. Расчет посадки с натягом
6. Выбор подшипников и проверочный расчет подшипников
7. Проверочный расчет валов на прочность
7.1 Проверочный расчет ведомого вала
7.2 Проверочный расчет тихоходного вала
8. Конструирование крышек подшипников и корпуса редуктора
Список литературы

При сборке конической передачи регулируют в начале подшипники, а затем зацепление. Материал корпуса редуктора СЧ15-серый чугун. При регулировании зацепления вал-шестерню перемещают в осевом направлении путем изменения толщины набора тонких металлических прокладок между корпусом редуктора и фланцами стакана.
В узле применены роликовые конические подшипники 7209 А с упорным бортом на наружной кольце. Крышка подшипника сквозная из материала СЧ-15. Поверхности сопряжения корпуса и крышки для плотного их прилегания шлифуют. При сборке узла эти поверхности для лучшего уплотнения покрывают тонким слоем герметика. Прокладки в полость разъема не ставят вследствие вызываемых ими искажения формы посадочных отверстий под подшипники и смещения осей отверстий с плоскости разъема.
Стакан имеет очень простую конструкцию. Особенностью конструкции стаканов, применяемых для установки подшипников «врастяжку», является то, что их положение в корпусе не внешняя цилиндрическая поверхность, а фланец.
Требуемый предварительный натяг подшипников создают динамометрическим ключом при монтаже 120…180 Н х м.
Общим недостатком консольного расположения шестерни является неравномерное распределение нагрузки по длине зуба-шестерни. Так как зубья конической шестерни нарезают на валу, то посадочный диаметр под подшипник оказывается небольшим. Коническое зацепление регулируют двумя комплектами прокладок, установленных под фланцем стакана.
Дата добавления: 06.04.2015
РП 899. ЭМ Реконструкция ВРУ главного корпуса детской психоневрологической больницы | AutoCad

Организация учета электроэнергии для проектируемого ВРУ предусматривается организовать во вводных панелях 1 и 2 (ВП-1 и ВП-2), и выполнить его трехфазным, трансформаторного включения, с узлами учета электроэнергии типа Меркурий 230 ART-03 CN 380/220 В, 5-7,5А. Проектом учено выполнение разделов:
-щитовое оборудование и распределительные щиты в соответствии с требованиями СП 31-110-2003, Разделов 1, 3, 4 и 7 ПУЭ (издание 7), ГОСТ Р 51778, ГОСТ Р 51732-01, ГОСТ Р 50509-93, а так же требований СНиП 41-01-2003 и ОЛХ.684.011-86;
-технический учет потребляемой электрической мощности в соответствии с требованиями СП 31-110-2003, главы 1.5. ПУЭ (издание 7). В качестве расчетного прибора принять счетчик Меркурий 230;
-рабоче-защитного заземления и системы дополнительного уравнивания потенциалов системы TN-C-S в соответствии с требованиями главы 1.7 ПУЭ (издание 7).

Общие данные.
Принципиальная однолинейная электрическая схема ВП-1 и ВП-2.
Принципиальная однолинейная электрическая схема РП-1.
Принципиальная однолинейная электрическая схема РП-2.
Схема компоновки панелей ВРУ.
Схема компоновки шкафов РП-1 и РП-2.
Дата добавления: 06.04.2015
РП 900. ОВ Многофункциональный спортивый зал общеобразовательной школы | Компас

3.Расчетные температуры наружного воздуха:
- для систем отопления и вентиляции для холодного периода года температура - 35 С;
- для систем вентиляции для теплого периода + 22,8 С;
4.Внутренняя температура воздуха в помещениях зала +18 С, бытовых помещениях +25 С, технических и подсобных помещениях +15 С.
5.Теплоноситель - горячая вода с параметрами 95-70 С.
6.Водяная система отопления - двухтрубная, горизонтальная, с нижней разводкой. Система разбита на две пофасадные отдельные ветви.
7.В качестве нагревательных приборов приняты биметаллические радиаторы "Rifar Monolit 500" и регистр из гладких труб для электропомещения.
8.Регулирование водяной системы отопления предусматривается при помощи радиаторных терморегуляторов с термостатами и ручными балансировочными клапанами в узле управления.
9.Удаление воздуха из системы отопления предусматривается через автоматические воздухоотводчики, установленные в верхних точках систем теплоснабжения и через воздушные краны, устанавливаемые в верхних пробках нагревательных приборов. В нижних точках систем установить краны для спуска воды.
10.Трубопроводы и отопительные приборы крепить по чертежам серии 4.904-69 по месту к строительным конструкциям здания и полу. Расстояние между опорами для труб 50 - не более 3м, 40, 32 - 2,5м, 25, 20 - 2,0м, 15 - 1,5м.
11.Проектом предусматриваются:
- трубопроводы систем отопления из труб стальных водогазопроводных легких неоцинкованных по ГОСТ 3262-75;
- трубопроводы теплоснабжения приточных систем из труб стальных электросварных по ГОСТ 10704-91.
12.Сварку стальных трубопроводов производить согласно ГОСТ 16037-80.
13.Трубопроводы в местах пересечения со строительными конструкциями проложить в гильзах из негорючих материалов, края гильз должны быть на одном уровне с поверхностью стен, перегородок и потолков, но на 30мм выше поверхности чистого пола. Заделку зазоров и отверстий в местах прокладки трубопроводов и воздуховодов выполнить негорючими материалами, обеспечивая нормируемый предел огнестойкости ограждений.
14.Компенсация тепловых удлинений решена за счет подъемов и поворотов трассы.
15.На трубопроводы отопления, проложенные над проемами наружных дверей и в пространстве подшивного потолка нанести антикоррозийное покрытие и теплоизолировать.
16.Антикоррозионное покрытие - краска БТ-177 по ОСТ 6-10-426-79 в два слоя по грунтовке ГФ-021 по ГОСТ 25129-82. Тепловая изоляция - трубная изоляция на основе вспененного синтетического каучука толщиной 19 мм SH/НТ/Armaflex фирмы "ARMACELL".
17.После монтажа неизолированные трубопроводы от ржавчины и окрасить масляной краской за 2 раза.
18.Воздухообмен для помещений рассчитан согласно СНиП, СанПин по одному из следующих критериев:
- по нормируемой кратности воздухообмена;
- по нормируемому расходу наружного воздуха на людей.
19.В здании многофункционального зала запроектированы: приточная система П1 с подачей свежего воздуха в основной зал и П2 - для остальных помещений здания. Наружный воздух, подаваемый системой подвергается очистке фильтром, догревается с помощью калорифера и через воздухораспределительные устройства подается в верхнюю зону помещения.
20.В качестве приточных установок приняты модульные компактные установки "Breezart" производства ООО "Климат Лайн" г. Москва.
21.Вытяжные системы состоят из оборудования канального и радиального типа. Удаление воздуха из помещений здания производится из верхней зоны вытяжными системами В1-В4.
22.Приточные и вытяжные установки монтировать строго в соответствии с паспортами на данное оборудование.
23.Водосмесительные узлы приточных установок П1и П2 расположены на самих установках.
24.Регулирование расхода воздуха в приточной и вытяжных системах осуществляется изменением скорости вращения рабочего колеса вентилятора за счет изменения напряжения, подаваемого на двигатель вентилятора, при помощи трансформатора напряжения или частотного регулятора.
25.При наладке системы отрегулировать на заданные производительности.
26.Для устранения шума от вентустановок и снижения его уровня до нормируемой величины предусматриваются следующие мероприятия:
- приточные установки модульного типа и вытяжные вентагрегаты выполнены в звукоизолированном корпусе;
- в комплектацию вентиляционных установок включены шумоглушители;
- воздуховоды и вениляторы соединяются при помощи гибких вставок;
- при подборе вент.установок приняты окружные скорости рабочего колеса, допустимые по условиям оптимальной бесшумности
27.Скорости воздуха в воздуховодах приняты не более 6 м/с, что гарантирует низкий уровень аэродинамического шума. Скорости воздуха на выходе из приточных решеток приняты не более 1,5 м/с, на входе в вытяжные решетки - не более 2 м/с. Эти мероприятия обеспечивают снижение шума до уровня, допустимого по СП 51.13330-2011 "СНиП 23-03-2003 "Защита от шума".
Дата добавления: 10.04.2015


© Rundex 1.2
 
Cloudim - онлайн консультант для сайта бесплатно.