Добавить проект
Прочитать правила
Платный доступ
Авторизация:
Информация


7%20%20

Найдено совпадений - 5254 за 1.00 сек.


КП 3586. Курсовой проект - Торгово-развлекательный центр 108 х 48 м в г. Брянск | AutoCad
Введение 2
1.Исходные данные строительства 3
2.Генеральный план участка 5
3.Объемно-планировочное решение здания 5
4.Архитектурно-строительный раздел 6
4.1. Основания и фундаменты 7
4.2. Стены и перегородки 8
4.3. Перекрытия и пол 9
4.4. Лестницы 10
4.5. Кровля 10
4.6. Окна и двери 10
4.7. Наружная и внутренняя отделка 11
5. Инженерное оборудование 12
6. Теплотехнический расчет 15
Заключение 17
Список использованных источников 18

Здание имеет сложную форму; запроектировано с подвала.
Запроектировано:
-высота 1-го этажа – 4,20 м;
-высота 2-го этажа – 4,20 м;
-высота подвала – 2,00 м;
-высота всего здания — 12,950 м;
-размеры в осях — 108000 м (1–19), 48000М (А-К).
Данная здание имеет 2 этажа.
Основной вход в кафе располагается с главного фасада здания.

В данном здании запроектирован столбчатый фундамент стаканного типа.
Наружные стены - панельные с навесным фасадом толщиной 300 мм.
Запроектированы внутренние перегородки из гипсобетона толщиной 100 мм.
В данном здании запроектировано перекрытие, состоящее из многопустотных железобетонных плит толщиной 220 мм.
Лестница на второй этаж состоит из крупноразмерных элементов, имеет перила высотой 900 мм.
Крыша запроектирована плоская, утепленная.
Окна выполнены на заказ. Предусмотрены окна в виде витражного остекления.
Дата добавления: 08.02.2021
КП 3587. Курсовой проект - Паровая турбина типа К-20-3,6 | Компас

АННОТАЦИЯ 3
СОДЕРЖАНИЕ 4
ВВЕДЕНИЕ 5
1. ОПИСАНИЕ КОНСТРУКЦИИ 6
ТУРБИНЫ ТИПА К-20-3,6 6
2. РЕГУЛИРУЮЩАЯ СТУПЕНЬ 7
2.1 Расчетный режим работы турбины 7
2.2 Частота вращения ротора турбины 7
2.3 Способ регулирования 7
2.4 Регулирующая ступень 8
2.5 Проточная часть исходной двухвенечной ступени скорости 8
2.6 Тепловой расчет двухвенечной ступени скорости 10
2.7 Выбор расчетного варианта регулирующей ступени 14
2.8 Треугольники скоростей и потери энергии в решетках регулирующей ступени 15
3. НЕРЕГУЛИРУЕМЫЕ СТУПЕНИ 18
3.1Типы нерегулируемых ступеней 18
3.2 Ориентировочные параметры последней ступени 19
3.3 Ориентировочные параметры первой нерегулируемой ступени 20
3.4 Ориентировочные параметры промежуточных ступеней давления. Формирование проточной части нерегулируемых ступеней 21
3.5 число нерегулируемых ступеней давления и распределение теплового перепада между ними 22
3.6 детальный тепловой расчет нерегулируемых ступеней давления 26
3.6.1 Расчет направляющих лопаток 1-ой ступени 26
3.6.2 Расчет рабочих лопаток 1-ой ступени 28
3.6.3 Определение потерь энергии, к.п.д. и внутренней мощности 31
3.8 Треугольники скоростей ступеней давления 37
3.9 Тепловой процесс в i,s-диаграмме промежуточной нерегулироемой ступени 40
4. РАСЧЕТ ОСЕВОГО УСИЛИЯ, ДЕЙСТВУЮЩЕГО НА РОТОР ТУРБИНЫ 43
5. ТРЕБОВАНИЯ К МАТЕРИАЛАМ 45
6. ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ ТУРБИНЫ 48
7. ОПРЕДЕЛЕНИЕ РАЗМЕРОВ ПАТРУБКОВ ОТБОРА ПАРА ИЗ ТУРБИНЫ 49
8. ТЕХНИКА БЕЗОПАСНОСТИ 50
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 51

ИСХОДНЫЕ ДАННЫЕ
для курсового проекта студента на тему:
«Рассчитать и спроектировать многоступенчатую одноцилиндровую конденсационную паровую турбину с сопловым парораспределением»
Номинальная мощность турбины Nном = 20,000 МВт.
Начальное давление пара р0 = 3,600 МПа.
Начальная температура пара Т0 = 705,000 К.
Конечное давление пара рк = 4,200 кПа.
Температура питательной воды Тпв = 425,000 К.

ДАННЫЕ
из расчёта тепловой схемы ПТУ



Роторы турбины и генератора соединены между собой посредством упругой муфты.
Турбина одноцилиндровая и одновальная. Проточная часть включает двухвенечную ступень скорости, используемую в качестве регулирующей, а также 14 ступеней давления.
Корпус турбины литой. В паровой турбине запрессованы седла клапанов, внутри коробки на поперечной траверсе подвешены четыре регулирующих клапана. Паровая и сопловая коробки составляют одно целое. Коробка крепится фланцем к верхней половине корпуса. Все диски насадные и набираются на роторе с двух сторон.
Концевые периферийные уплотнения выполнены в виде гребешков, закрепленных в корпусе.
Корпус переднего подшипника соединяется с корпусом турбины в нижней части при помощи специального устройства, которое исключает возможность опрокидывания корпуса подшипника, так как оно располагается вблизи его опорной плоскости. Передний подшипник опорно-упорный со сферическим вкладышем. На крышке заднего подшипника установлено валоповоротное устройство. Регулирование гидравлическое. Колесо главного масляного центробежного насоса установлено на переднем конце вала турбины.
Отборы пара на РППВ предусмотрены за 5, 8, 10 и 13 ступенями.
Все рабочие лопатки имеют бандаж, кроме последних трех. Каждые два рабочих диска фиксируются на валу в осевом направлении стальными полукольцами, вставленными в канавки вала. Диафрагмы центруются с помощью радиальных штифтов.
Дата добавления: 09.02.2021
КП 3588. Курсовой проект - Одноэтажное промышленное здание 60,0 х 36,5 м в г. Славгород | AutoCad

Состав графической части: 2
Введение 3
1 Исходные данные 4
2 Краткая характеристика здания 4
3 Генеральный план 5
4 Объемно-планировочное решение 6
4.1 Производственное здание 6
4.2 Административно-бытовой корпус 6
5 Конструктивное решение 10
5.1 Производственное здание 10
6 Наружная и внутренняя отделка 21
7 Инженерное оборудование 22
8 Список литературы 23

Число работающих: всего – 120 человек, из них женщин – 50%, ИТР и служащих 12 человек, режим работ – 2 смены
В наиболее многочисленной смене – 90 чел., из них женщин – 50%
Подъемно-транспортное оборудование – крана типа кранбалк, мостовой кран

Данное здание представляет собой одноэтажный цех с двумя параллельными пролетами шириной (по осям А-В) 12 м, высотой 6 м.. и (по осям Г-З) 24 м высотой 9,6 м. и длиной (по осям 1-13) 60 м, качестве .наружных стен используются навесные панели из легкого бетона толщиной 300 мм. Производственное здание прямоугольное в плане и имеет габаритные размеры 36,5х60 м.
В здании предусматривается температурный шов между пролетами (оси В Г). Шаг колонн во всех пролетах – 6 м. Пролет по осям Г-З оборудован опорным мостовым краном грузоподъемностью 15 т. Пролет А-В оборудован подвесным краном-балкой грузоподъемностью 10 т. В здании предусмотрено распашные ворота (4 шт), двое расположены со стороны главного фасада, двое других – со стороны правого и левого фасада здания, размеры ворот 3х3,6 м. Въезд осуществляется через пандусы размером 1,8х6 м., с уклоном i=0,05. Световые проемы выполнены в виде лент непрерывного остекления, на высоте 1,2 м и 4,8 м от уровня пола.


В данном проекте применяются унифицированные монолитные фундаменты, имеющие ступенчатую конструкцию с подколонником и стаканом для заделки колонн, предназначенные как для колонн прямоугольного сечения.
Для опирания стеновых панелей по подколонникам укладывают ж/б фундаментные балки, имеющие номинальную длину 6м.
В качестве основных колонн в данном здании применяются сборные ж/б колонны прямоугольного сечения.
В пролете запроектирован опорный мостовой кран грузоподъемностью 15 тонн для перемещения грузов внутри цеха.
В данном проекте применяются плоские однослойные легкобетонные панели номинальной длиной 6 м из автоклавных ячеистых бетоном марки 35, накрытые с обеих сторон фактурным слоем цементно-песчаного раствора толщиной 20 мм. Толщина панелей 300 м, включая фактурные слои. Длина рядовых панелей 5980мм, угловых – 6330мм. высота и 1.8м.
Стропильные конструкции устраиваются в виде железобетонных стропильных балок. Стропильные конструкции устраиваются в виде железобетонных стропильных ферм.
Плиты покрытия, используемые в данном здании, имеют размеры 6х3 м.
В поперечном направлении устойчивость здания обеспечивается жесткостью заделанных в фундамент колонн и жестким диском покрытия, в продольном - вертикальными крестообразными связями, расположенными в среднем шаге колонн температурного блока.
Вертикальные связей в покрытиях не предусмотрено, т.к. высота опорной части стропильной балки составляет 890 мм.

АБК запроектирован по отношению к цеху отдельно стоящим и соединяется с последним крытым отапливаемым наземным переходом.
Принятая каркасная схема обеспечивает достаточную свободу планировочных решений. Сетка колонн 6х6м. Высота помещений 2.7м.
Предусмотренный вход в здание, осуществляется через тамбур глубинно 1.7м, в вестибюль.
Дата добавления: 09.02.2021
КП 3589. Курсовой проект - 3-х этажный жилой дом из мелкоразмерных элементов 26,8 х 13,2 м в г. Краснодар | AutoCad

Введение 3
Задание на проектирование 4
1 Особенности конструктивных решений 6
1.1 Общая часть 6
1.2 Район строительства 6
1.3 Объемно-планировочные решения 6
2 Конструктивное решение 8
2.1 Фундамент 8
2.2 Стены и перегородки 9
2.3 Перекрытия 14
2.4 Лестницы 14
2.5 Крыша, кровля, водоотвод 15
2.6 Окна, двери 16
2.7 Отделка 19
3 Инженерное оборудование 23
3.1 Электроснабжение 23
3.2 Канализация 23
3.3 Водоснабжение 23
3.4 Газоснабжение 23
3.5 Система отопления 23
3.6 Пожарная безопасность 23
4 Технико-экономические показатели 25
Заключение 26
Литература 27

Здание в плане сложной конфигурации. Ось симметрии проходит по стене. Зрительное и пространственное объединение таких помещений как кухня, холл и гостиная является отличительным признаком организации пространства современного жилого дома.
1. Форма здания прямоугольная;
2. Тип здания - Жилой дом;
3. Этажность здания – 3 этажа (12 квартир);
4. Размеры в осях 1-7 – 26,8 м, А-В – 13,2 м;
5. Общая высота здания – 12,22 м.
6. Высота этажа – 3 м.

Здание имеет бескаркасную конструктивную систему. Перекрытия опираются на поперечные несущие стены здания. Необходимую жесткость зданию придают перевязка кирпичей в стенах, а также плиты перекрытия, которые заанкерованы в стены.
Фундамент принят сборный железобетонный ленточный с монолитными участками. Глубина заложения основания подушки составляет -1.8м.
В проектируемом здании стены выполнены из керамзитобетона на керамзитовом песке по многорядной системе перевязки, толщиной 120 мм, кладка из пеносиликата толщиной 300 мм и 80 мм утеплителя – маты минераловатные ГОСТ 21880 между ними. Наружная привязка стен 300 мм, внутренняя 200 мм. Внутренние несущие стены кирпичные толщиной 380 мм, привязка по центру.
Перегородки выполнены из пустотного кирпича толщиной 120 мм.
Плиты перекрытия междуэтажные приняты в соответствии с ГОСТ 9561-2016. Плиты перекрытия балконов приняты в соответствии с ГОСТ 25697-2018
Перекрытия приняты сборные железобетонные многопустотные с круглыми пустотами. Плиты толщиной 220 мм. Марки 1ПК 33.10, 1ПК 66.12, 1ПК 66.15, 1ПК 33.18, 1ПК 24.12, 1ПК 66.10.
Лестницы в проектируемом здании приняты сборные железобетонные.
Крыша вальмовая. Несущими элементами является наслонные стропила.

Технико-экономические показатели:



Дата добавления: 09.02.2021
РП 3590. ПС Клуб на 400 мест | AutoCad

Системы пожарной сигнализации и оповещения о пожаре выполнены на базе интегрированной системы "Орион" ЗАО НВП "Болид".
Техническая реализация системы "Орион" основана на использовании пульта контроля и управления "С2000М", который опрашивает по линии интерфейса RS-485, подключенные к нему устройства системы, в данном проекте - устройства пожарной сигнализации и оповещения о пожаре.

При возгорании на защищаемом объекте - срабатывании пожарного извещателя, сигнал поступает на ПКУ С2000М. Пульт контроля и управления С2000М согласно запрограммированной логике выдает сигнал на запуск оповещения по линии RS-485.

Общие данные.
Схема структурная общая
План расстановки оборудования системы пожарной сигнализации и оповещения людей о пожаре на отм. -2.100
План расстановки оборудования системы пожарной сигнализации на отм. 0.000
План расстановки оборудования системы пожарной сигнализации на отм. +4.200
План расстановки оборудования системы пожарной сигнализации на отм. +8.700
План расстановки оборудования системы светового оповещения на отм.+4.200
План расстановки оборудования системы оповещения людей о пожаре на отм. +8.700
План расстановки оборудования системы светового оповещения людей о пожаре на отм. +8.700
План расстановки оборудования системы речевого оповещения на отм. 0.000
План расстановки оборудования системы речевого оповещения на отм. +4.200
План расстановки оборудования системы пожаротушения на отм. 0.000
План расстановки оборудования инженерных систем на отм. 0.000
План расстановки оборудования инженерных систем на отм. +4.200
Схемы подключения оборудования ПС
Дата добавления: 09.02.2021
КП 3591. Курсовой проект - Стальные конструкции одноэтажного промышленного здания 120 х 30 м | AutoCad

Рассчитана ферма из круглых труб, поперечная рама, одноступенчатая колонна. На основании расчета произведен подбор сечения и размеров колонны, фермы.
Разработана отправочная марка на ферму.


РЕФЕРАТ 3
СОДЕРЖАНИЕ 4
ВВЕДЕНИЕ 6
НОРМАТИВНЫЕ ССЫЛКИ 7
ИСХОДНЫЕ ДАННЫЕ 8
1 РАСЧЕТ ФЕРМЫ 9
1.1 Дополнение к заданию для расчета фермы 9
1.2 Сбор нагрузок 9
1.3 Определение усилий в элементах фермы 10
1.4 Определение расчетных длин стержней фермы 11
1.5 Подбор сечений элементов 11
1.6 Расчет узлов фермы 13
1.6.1 Промежуточный узел фермы с заводским стыком верхнего пояса 13
1.6.2 Укрупнительный стык нижнего пояса фермы на монтажной сварке 14
1.6.3 Опорный узел 15
1.6.4 Монтажный стык верхнего пояса 15
2 РАСЧЕТ ПОПЕРЕЧНОЙ РАМЫ С ШАРНИРНЫМ ПРИКРЕПЛЕНИЕМ РИГЕЛЯ К КОЛОННАМ 16
2.1 Компоновка рамы 16
2.2 Нагрузки, действующие на раму 18
2.2.1 Постоянные нагрузки 18
2.2.2 Нагрузки от стенового ограждения 19
2.2.3 Снеговая нагрузка 19
2.2.4 Нагрузки от мостовых кранов 19
2.2.5 Горизонтальное давление от торможения крановой тележки 21
2.2.6 Ветровая нагрузка 21
2.3 Расчетная схема 24
2.4 Статический расчет 25
2.4.1 Постоянная линейная нагрузка от покрытия 26
2.4.2 Снеговая нагрузка 26
2.4.3 Вертикальное давление кранов 28
2.4.4 Горизонтальное давление кранов на раму 30
2.4.5 Ветровая нагрузка 32
3 РАСЧЕТ ВНЕЦЕНТРЕННО СЖАТОЙ КОЛОННЫ 37
3.1 Исходные данные 37
3.2 Расчетные длины участков колонны 37
3.3 Расчет надкрановой части колонны 39
3.4 Расчет подкрановой части колонны 43
3.4.1 Расчет ветвей подкрановой части 43
3.4.2 Расчет решетки 47
3.4.3 Проверка устойчивости колонны в плоскости рамы как единого сквозного стержня 47
3.5 Расчет узла сопряжения верхней и нижней частей колонны 48
3.5.1 Проверка прочности шва 1 49
3.5.2 Расчет швов 2 крепления ребра к траверсе 49
3.5.3 Расчет швов 3 крепления траверсы к подкрановой ветви 50
3.5.4 Проверка прочности траверсы как балки, загруженной N, M, D 50
3.6 Расчет и конструирование базы колонны 51
3.6.1 База подкрановой ветви 52
3.6.2 База наружной ветви 53
3.6.3 Расчет анкерных болтов 55
ЗАКЛЮЧЕНИЕ 56
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 57

ИСХОДНЫЕ ДАННЫЕ
Шаг колонн в продольном направлении B = 12 м
Пролет здания L = 30 м
Длина здания 120 м
Режим работы кранов средний
Отметка головки рельса 10 м
Грузоподъемность мостовых кранов 500 кН
Снеговая нагрузка 2,4 кПа
Ветровая нагрузка 0,3 кПа
Характер покрытия холодное
Тип ферм из круглых труб
Примечания:
1. Расчетные сопротивления проката R_u и R_y принимаются в соответствии с выбранным классом стали по СП 16.13330.2017.
2. Расчетные сопротивления стали сдвигу и смятию торцевой поверхности соответственно равны Rs = 0,58Ry; Rp = Ru.
3. Коэффициенты условий работы во всех случаях условно принять равными γс = 1.
4. Модуль упругости стали E = 2,06·104 кН/см2 = 2,06·105 МПа.


В процессе выполнения проекта были рассчитаны конструкции одноэтажного промышленного здания: ферма покрытия, стальная одноступенчатая колонна. Также был выполнен расчет поперечной рамы.
Подкрановая балка имеет высоту 1,2 м.
Ферма из круглых труб пролетом 30 м. Высота 3,625 м. Выполнена из стали марок С345 и С235.
Подобраны сечения элементов отправочной марки, выполнены расчеты узлов.
Колонна выполнена одноступенчатой, двухветвевой. Сечение надкрановой части – прокатный двутавр 50Б1. Подкрановая часть – сварной швеллер и прокатный двутавр. Размеры швеллера: стенка размером 530х16, полки 120х10. Двутавр 50Б1. Колонна имеет раздельную базу, каждая ветвь колонны крепится к базе с помощью 4-х анкерных болтов.
Данные для расчета колонны получены при расчете поперечной рамы одноэтажного промышленного здания.
В графической части приведены чертежи всех конструкций.
Дата добавления: 10.02.2021
КП 3592. Курсовой проект - 3-х этажный жилой дом из мелкоразмерных элементов 12,9 х 11,1 м в г. Нижний Новгород | AutoCad

Введение 3
Задание на проектирование 4
1 Особенности конструктивных решений 6
1.1 Общая часть 6
1.2 Район строительства 6
1.3 Объемно-планировочные решения 6
2 Конструктивное решение 8
2.1 Фундамент 8
2.2 Стены и перегородки 9
2.3 Перекрытия 14
2.4 Лестницы 14
2.5 Крыша, кровля, водоотвод 15
2.6 Окна, двери 16
2.7 Отделка 19
3 Инженерное оборудование 23
3.1 Электроснабжение 23
3.2 Канализация 23
3.3 Водоснабжение 23
3.4 Газоснабжение 23
3.5 Система отопления 23
3.6 Пожарная безопасность 23
4 Технико-экономические показатели 25
Заключение 26
Литература 27

Здание в плане сложной конфигурации. Ось симметрии проходит от главного входа по стене. Зрительное и пространственное объединение таких помещений как кухня, холл и гостиная является отличительным признаком организации пространства современного жилого дома.
1. Форма здания прямоугольная;
2. Тип здания - Жилой дом;
3. Этажность здания – 3 этажа (12 квартир);
4. Размеры в осях 1-5 – 12,9 м, А-В – 11,1 м;
5. Общая высота здания – 12,27 м.
6. Высота этажа – 2,8 м.

Здание имеет бескаркасную конструктивную систему. Перекрытия опираются на продольные несущие стены здания. Необходимую жесткость зданию придают перевязка кирпичей в стенах, а также плиты перекрытия, которые заанкерованы в стены.
Фундамент принят сборный железобетонный ленточный с монолитными участками.
В проектируемом здании стены выполнены из силикатного кирпича на цементно-песчаном растворе ГОСТ 379-2015 «Кирпич, камни, блоки и плиты перегородочные силикатные» (марка кирпича М100), по многорядной системе перевязки толщиной 380 и 120 мм ,140 мм утеплителя – маты из стеклянного шпательного волокна между ними.
Плиты перекрытия междуэтажные приняты в соответствии с ГОСТ 9561-2016.
Перекрытия приняты сборные железобетонные многопустотные с круглыми пустотами. Плиты толщиной 220 мм. Марки ПК 48.10-8, ПК 60.15-8, ПК 60.10-8.
Лестницы в проектируемом здании приняты сборные железобетонные. Число маршей 6. Количество ступеней - 18 между этажами размером 150 * 300 мм., ширина лестничного марша 1,2м.
Крыша двускатная. Несущими элементами является наслонные стропила.

Технико-экономические показатели:



Дата добавления: 10.02.2021
ДП 3593. Дипломный проект - Проектирование участка механической обработки детали «Корпус» МЖИГ.711220.007 Токосъемника | Компас

ВВЕДЕНИЕ 3
1. ОБЩАЯ ЧАСТЬ 5
1.1. Исходные данные для проектирования 5
1.2 Служебное назначение, техническая характеристика и описание сборочной единицы, схема сборки 5
1.3. Определение типа производства и его организационной формы 9
2. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ 13
2.1. Оценка технологичности конструкции сборочной единицы и конструкции изготавливаемой детали 13
2.2. Анализ базового варианта ТП 18
2.3. Выбор способа получения исходной заготовки и ее проектирование 21
2.4. Обоснование технологического маршрута и выбор баз 29
2.5. Расчет припусков на механическую обработку 30
2.6. Расчет режимов резания 34
2.7. Техническое нормирование 37
2.8. Анализ эффективности проектного ТП 39
2.9. Планировка участка 43
2.9.1 Расчет количества оборудования и занимаемой им площади 43
2.9.2 Описание планировки участка 45
3 КОНСТРУКТОРСКАЯ ЧАСТЬ 47
3.1 Размерный анализ сборочной единицы 47
3.2 Проектирование станочного приспособления 49
3.2.1 Описание и назначение конструкции приспособления 51
3.2.2 Описание базирующих элементов и анализ погрешности базирования 52
3.2.3 Расчет усилия зажима 53
3.2.4 Расчет на прочность наиболее нагруженной детали 53
3.3 Проектирование контрольного приспособления 54
4 ИССЛЕДОВАТЕЛЬСКАЯ ЧАСТЬ 56
ЗАКЛЮЧЕНИЕ 64
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 65










По принципу работы токосъемник представляет собой систему со скользящими контактами между щетками и кольцами, посредством которой питание током передается от неподвижного источника к вращающимся потребителям.
Все перечисленные выше требования требуют внимательного подхода к каждой операции, особенно при выборе установочных баз и режимов резания, а также повышенные требования к точности зажимных приспособлений.
Работа токосъемника: Токосъемник осуществляет передачу энергии через скользящие контакты на вращающуюся часть несущего винта, т.е. на лопасти.


1. Напряжение переменного трехфазного тока, В  - 187...207.
2. Частота тока, Гц                                      380-420.
3. Частота вращения, об/мин.                           2400±12.
4. Режим работы                                продолжительный. 
5. Габаритные размеры, мм                               530х505.
6. Масса без транспортировочной подставки, кг         60.

Деталь «Корпус» изделия является основной базовой деталью изделия токосъемник, на которой базируются все остальные, входящие в сборочную единицы, сборочные узлы и детали, а также различные стандартные элементы, такие как болты, винты, шпильки, штифты и т.д. Деталь должна обеспечивать требуемую жесткость конструкции изделия, поскольку является основной несущей деталью в сборке.
Корпус изготовляется из конструкционного герметичного алюминиевого сплава АК6 ГОСТ 4784-90 системы Al-Si-Mg.


1.Погрешность базирования: 0,014мм.
2.Точность индикатора: ±0,01мм.


1. Рабочий ход поршня поз.4 45мм.
2. Усилие на штоке пневмоцилиндра - 3184,9Н.
3. Рабочее давление воздуха в сети - 0,5 МПа.

ЗАКЛЮЧЕНИЕ
В выпускной квалификационной работе при разработке технологического процесса механической обработки детали «Корпус» большое внимание уделяется методу получения заготовки.
Для выполнения основных требований найден более рациональный вариант метода получения заготовки – литье под давлением. Переход на новый метод получения заготовки позволил получить экономию материала, сократить время обработки детали и снизить количество необходимой оснастки и режущего инструмента.
Применение станков с ЧПУ также привело к сокращению времени на обработку детали «Корпус».
Сократилось количество оборудования, соответственно сократились производственные площади, высвободились рабочие.
Спроектировано станочное приспособление для закрепления заготовки на программной операции, что позволило обеспечить её точное базирование и сократить вспомогательное время.
Спроектировано контрольное приспособление для проверки торцевого биения детали.
В исследовательской части была изучена величина момента резания метчиков с внутренним размещением стружки при использовании ионизированного воздуха в качестве смазочно-охлаждающей среды.

Дата добавления: 10.02.2021
КП 3594. Курсовой проект - 3-х этажный жилой дом из мелкоразмерных элементов 24 х 9 м в г. Сочи | AutoCad

Введение 3
Задание на проектирование 5
1. Особенности конструктивных решений 6
1.1 Общая часть 8
1.2 Район строительства 6
1.3 Объемно-планировочные решения 6
2. Конструктивное решение 8
2.1Фундамент 9
2.2 Стены и перегородки 11
2.3 Перекрытия 15
2.4 Лестницы 16
2.5 Крыша, кровля, водоотвод. 16
2.6 Окна, двери 17
2.7 Отделка 21
3. Инженерное оборудование 24
3.1 Электроснабжение 24
3.2 Канализация 24
3.3 Водоснабжение 24
3.4 Газоснабжение 24
3.5 Система отопления 24
4. Технико-экономические показатели 25
Заключение 26
Литература 27

• Форма здания прямоугольная;
• Тип здания - Жилой дом;
• Этажность здания – 3 этажа (6 квартир);
• Размеры в осях 1-6 – 24 м, А-В – 9 м;
• Общая высота здания – 11,7 м.
• Высота этажа – 3 м.

Здание имеет бескаркасную конструктивную систему с опиранием перекрытий на продольные стены. Необходимую жесткость зданию придают горизонтальные диафрагмы жёсткости – заанкериванные в стены и между собой перекрытия и перевязка кирпичей в стенах. Фундамент принят сборный железобетонный ленточный с монолитными участками. Глубина заложения -1.5м.
В проектируемом здании стены выполнены из обыкновенного глиняного кирпича ГОСТ 530-80 (марка кирпича М100), по многорядной системе перевязки. Толщиной 300 мм,120 мм и 80 мм утеплителя - пенополистерола между ними, облицовка – штукатурка, окраска водоэмульсионными красками.
Наружная привязка стен 300 мм, внутренняя 200 мм. Внутренние несущие стены кирпичные толщиной 380 мм, привязка по центру.
Перегородки выполнены из пустотного кирпича толщиной 120 мм. Отделка внутренних стен –штукатура.
Перекрытия приняты сборные железобетонные многопустотные с круглыми пустотами. Плиты толщиной 220 мм.
Лестницы в проектируемом здании приняты сборные железобетонные. Число маршей 4. Крыша двухскатная.

Технико-экономические показатели:



Дата добавления: 10.02.2021

РП 3595. ЭОН 5-ти этажный 103 квартирный жилой дом с встроенными помещениями общественного назначения 1-го этажа в г. Альметьевск | AutoCad

Расчетные нагрузки на вводе в ящик управления и питания сетей наружного освещения определены в соответствии СП31-110-2003и дополнением к РД34.20.185-94.

Проектом предусмотрено выполнение наружного освещения внутридворовой территории жилого дома. Электроснабжение наружного освещения выполняется от ВРУ жилого дома (элекрощитовая в осях 10-12)
Управление освещением выполнить от щита ЯУО-9601-3474У3, установленным в электрощитовой жилого дома, в автоматическом режиме ( реле времени и фото реле ) стен.
Учет электроэнергии осуществляется счетчиком устанавливаемым в щите ЯУО-9601-34... с интерфейсом RS485.
Светильники наружного освещения подключаются к разным фазам по схеме А, В, С.

Описание проектных решений по компенсации реактивной мощности, релейной защите, управлению, автоматизации и диспетчеризации системы электроснабжения





1 Схема сети наружного освещения для жилого дома
2 Схема принципиальная управления освещением
3 План сети наружного освещения для жилого дома
4 Ведомость основных объемов работ.
5 Схема заземления
Дата добавления: 11.02.2021
КП 3596. Курсовой проект - Проектирование и исследование механизмов четырехтактного двигателя внутреннего сгорания | Компас

Техническое задание 5
Исходные данные 9
1. Определение законов движения механизма 10
1.1. Определение основных размеров механизма 10
1.2. Определение значений передаточных функций 11
1.2.1. Определение функций положения 11
1.2.2. Определение аналогов скоростей 13
1.2.3. Определение аналогов ускорений 15
1.3. Определение приведенных моментов инерции 17
1.4. Определение приведенных моментов сил 19
1.5. Определение приведенного момента инерции I группы звеньев 24
1.6. Определение параметров маховика 27
2. Силовой расчет механизма 28
2.1. Исходные данные для силового расчета механизма 28
2.2. Определение ускорений точек и угловых ускорений звеньев 28
2.3. Определение главных векторов и главных моментов сил инерции 29
2.4. Определение реакций в кинематических парах механизма 29
3. Проектирование зубчатой передачи и планетарного механизма 32
3.1. Проектирование зубчатой передачи 32
3.1.1. Исходные данные 32
3.1.2. Выбор коэффициентов смещения 32
3.1.3. Геометрический расчет эвольвентной зубчатой передачи 33
3.1.4. Проектирование станочного зацепления 35
3.1.5. Проектирование зубчатой передачи 37
3.2. Проектирование планетарного редуктора 38
3.2.1. Исходные данные 38
3.2.2. Подбор чисел зубьев 39
3.2.3. Графическая проверка 40
4. Проектирование кулачкового механизма 41
4.1. Исходные данные для проектирования 41
4.2. Построение кинематических диаграм методом графического интегрирования 41
4.3. Определение основных размеров кулачкового механизма 42
4.4. Построение центрового и конструктивного профилей кулачка 42
4.5. Построение графика угла давления 43
Заключение 44
Литература 45
Приложение 1 46
Приложение 2 50


























































В ходе выполнения курсового проекта получены следующие результаты:
1. Спроектирована кинематическая схема и определены длины звеньев механизма: l_OA=0.0079 м,l_AB=0.317 м, H = 0.159 м, найдена зависимость давления в цилиндре от положения ведущего звена; получен закон движения первичного звена ω_1=ω_1 (φ_1 );
Для установившегося режима движения определен дополнительный момент инерции маховика, необходимый для обеспечения заданного коэффициента неравномерности вращения: J_доп=17.759 кг∙м^2.
2. Определены силовые воздействия на звенья механизма, рассчитаны усилия в кинематических парах при угловой координате φ_1= 30°.
Найден момент сопротивления M_с=225.288 H∙м. Относительная погрешность графического расчета по моменту Δ=1.73*10^(-13)%.
3. Спроектирована эвольвентная цилиндрическая зубчатая передача с числом зубьев колес Z6 = 10 и Z7 = 20, модулем m = 5 мм, коэффициентами смещения Х1 = 0.8 и Х2 = 0.8 и коэффициентом перекрытия <ε_α ] = 1.05.
4. Спроектирован планетарный редуктор с передаточным отношением U_1h=25 с числами зубьев колес z_1=91,〖 z〗_2=31,〖 z〗_3=33,〖 z〗_4=93 с выполнением всех необходимых условий.
5. Спроектирован кулачковый механизм с поступательно движущимся роликовым толкателем. Определены основные размеры кулачка: радиус начальной окружности r0 = 0.0236 м, радиус ролика Rp = 0.007 м, r = 0.0166 м.
Дата добавления: 11.02.2021
КП 3597. Курсовой проект - Проектирование оснований и фундаментов 3-х этажного 18-ти квартирного жилого дома | AutoCad

Введение 7
1 Анализ инженерно-геологических условий 8
2 Расчёт нагрузок на фундамент здания 13
3 Проектирование ленточного фундамента 15
3.1 Подбор размеров подошвы фундамента 16
3.2 Проверка на внецентренное сжатие 19
3.3 Определение группы по несущей способности 25
3.4 Определение конечной осадки ленточного фундамента мелкого заложения методом послойного суммирования 26
4 Проектирование свайного фундамента 31
4.1 Выбор типа и размеров свай 31
4.2 Выбор типа и глубины заложения ростверка 31
4.3 Определение несущей способности сваи по грунту 32
4.4 Размещение свай и уточнение размеров ростверка 35
4.5 Проверка свайного фундамента по I ГПС 35
4.6 Расчет свайного фундамента по II ГПС 36
4.7 Осадка свайного фундамента 38
Заключение 41
Список использованных источников 42

Основные конструкции и технико-экономические показатели: коли-чество этажей – 3, номер скважины – 9, нормативная глубина промерзания грунта – 1,2 м, нормативная снеговая нагрузка – 1,5КПа, глубина подвала – 2,25 м.

Расчётные характеристики грунтов:



















В результате выполнения данного курсового проекта был произведён: анализ инженерно-геологических условий, расчёт нагрузок на фундамент, а также расчёт и проектирование ленточного фундамента мелкого заложения и свайного фундамента.
В результате анализа инженерно-геологических условий были рас-считаны все нужные параметры грунтов скважины № 9, необходимые для проектирования фундаментов.
При сборе нагрузок на фундамент были учтены все, необходимые постоянные и временные нагрузки, вычислены итоговые значения по I ГПС и II ГПС.
Для ленточного фундамента были произведены: выбор глубины заложения фундамента, подбор размеров подушки фундамента и фундаментных стеновых блоков, проверка на внецентренное сжатие, определение группы по несущей способности и расчёт величины осадки. В результате были подобраны стеновые блоки ФБС 24.4.6-Т, ФБС 12.4.3-Т и подушка ФЛ 24.8-4. Величина осадки составляет - 0.00159 м, что соответствует нормам СНиП. Фундамент прошёл все проверки на прочность, следовательно, его надежность обеспечена.
Для свайного фундамента были произведены: подбор типа и размера свай, выбор типа ростверка, определение несущей способности по грунту, проверка по I ГПС и расчёт по II ГПС, вычислена величина осадки. Подобрана свая С3,5-30 . Величина осадки составляет – 0.00313м, что удовлетворяет требованиям СНиП.
Из двух рассчитанных вариантов фундамента более экономичным является ленточный фундамент мелкого заложения.
Дата добавления: 11.02.2021
КП 3598. Курсовой проект - Расчет объемов и обоснование технологии земляных работ по разработке котлована под строительство здания, планировке площадки и устройству фундамента | AutoCad

Реферат 3
Часть 1. Расчет объема земляных работ 4
Часть 2. Технология выполнения земляных работ 13
2.1. Составление картограммы перемещения грунта 13
2.2.Подбор землеройной техники 14
2.2.1. Выбор экскаватора. 14
2.2.2.Выбор бульдозера 15
Заключение  27
Список литературы 28


- площадка имеет размеры А=60 м, Б=80м. Нижняя горизонталь имеет отметку 67.00м.
Шаг горизонталей (превышение одной над другой соседней) G=+0,20м;
- котлован по дну имеет размеры Г=20м, В=25м; глубина – Н = 1,5м;
- привязка дна котлована к участку: Д=20м, Е=24м;
- наклон проектируемой площадки (для стока дождевых вод) – i =2,0%;
- ось наклона площадки к оси «Х» – 42о;
- объем вывозки грунта – 200 м3, расстояние –20 км;
- вид грунта – супесь.

Заключение
Проведенные расчеты содержащихся в задании работ по планировке площадки и разработке котлована под здание. что позволило в укрупненном масштабе определить объем работы . затрат времени и денежных средств, подобрав соответствующую землеройную технику
Дата добавления: 11.02.2021
КП 3599. Курсовая работа - Стальные конструкции одноэтажного промышленного здания 108 х 30 м | AutoCad

Рассчитана ферма из круглых труб, поперечная рама, одноступенчатая колонна. На основании расчета произведен подбор сечения и размеров колонны, фермы.
Разработана отправочная марка на ферму.


РЕФЕРАТ 3
СОДЕРЖАНИЕ 4
ВВЕДЕНИЕ 6
НОРМАТИВНЫЕ ССЫЛКИ 7
ИСХОДНЫЕ ДАННЫЕ 8
1 РАСЧЕТ ФЕРМЫ 9
1.1 Дополнение к заданию для расчета фермы 9
1.2 Сбор нагрузок 9
1.3 Определение усилий в элементах фермы 10
1.4 Определение расчетных длин стержней фермы 11
1.5 Подбор сечений элементов 11
1.6 Расчет узлов фермы 13
1.6.1 Промежуточный узел фермы с заводским стыком верхнего пояса 13
1.6.2 Укрупнительный стык нижнего пояса фермы на монтажной сварке 14
1.6.3 Опорный узел 15
1.6.4 Монтажный стык верхнего пояса 15
2 РАСЧЕТ ПОПЕРЕЧНОЙ РАМЫ С ШАРНИРНЫМ ПРИКРЕПЛЕНИЕМ РИГЕЛЯ К КОЛОННАМ 16
2.1 Компоновка рамы 16
2.2 Нагрузки, действующие на раму 18
2.2.1 Постоянные нагрузки 18
2.2.2 Нагрузки от стенового ограждения 19
2.2.3 Снеговая нагрузка 19
2.2.4 Нагрузки от мостовых кранов 19
2.2.5 Горизонтальное давление от торможения крановой тележки 21
2.2.6 Ветровая нагрузка 21
2.3 Расчетная схема 24
2.4 Статический расчет 25
2.4.1 Постоянная линейная нагрузка от покрытия 26
2.4.2 Снеговая нагрузка 26
2.4.3 Вертикальное давление кранов 28
2.4.4 Горизонтальное давление кранов на раму 30
2.4.5 Ветровая нагрузка 32
3 РАСЧЕТ ВНЕЦЕНТРЕННО СЖАТОЙ КОЛОННЫ 37
3.1 Исходные данные 37
3.2 Расчетные длины участков колонны 37
3.3 Расчет надкрановой части колонны 39
3.4 Расчет подкрановой части колонны 43
3.4.1 Расчет ветвей подкрановой части 43
3.4.2 Расчет решетки 47
3.4.3 Проверка устойчивости колонны в плоскости рамы как единого сквозного стержня 47
3.5 Расчет узла сопряжения верхней и нижней частей колонны 48
3.5.1 Проверка прочности шва 1 49
3.5.2 Расчет швов 2 крепления ребра к траверсе 49
3.5.3 Расчет швов 3 крепления траверсы к подкрановой ветви 50
3.5.4 Проверка прочности траверсы как балки, загруженной N, M, D 50
3.6 Расчет и конструирование базы колонны 51
3.6.1 База подкрановой ветви 52
3.6.2 База наружной ветви 53
3.6.3 Расчет анкерных болтов 55
ЗАКЛЮЧЕНИЕ 56
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 57

ИСХОДНЫЕ ДАННЫЕ
Шаг колонн в продольном направлении B = 12 м
Пролет здания L = 30 м
Длина здания 102 м
Режим работы кранов средний
Отметка головки рельса 12 м
Грузоподъемность мостовых кранов 800 кН
Снеговая нагрузка 2,4 кПа
Ветровая нагрузка 0,3 кПа
Характер покрытия утепленное
Тип ферм из круглых труб

Примечания:
1. Расчетные сопротивления проката R_u и R_y принимаются в соответствии с выбранным классом стали по СП 16.13330.2017.
2. Расчетные сопротивления стали сдвигу и смятию торцевой поверхности соответственно равны Rs = 0.58Ry; Rp = Ru.
3. Коэффициенты условий работы во всех случаях условно принять равными γс = 1.
4. Модуль упругости стали E = 2,06·104 кН/см2 = 2,06·105 МПа.

ЗАКЛЮЧЕНИЕ
В процессе выполнения проекта были рассчитаны конструкции одноэтажного промышленного здания: ферма покрытия, стальная одноступенчатая колонна. Также был выполнен расчет поперечной рамы.
Подкрановая балка имеет высоту 1 м.
Ферма из круглых труб пролетом 30 м. Высота 3,080 м. Выполнена из стали марок С345 и С235. Подобраны сечения элементов отправочной марки, выполнены расчеты узлов.
Колонна выполнена одноступенчатой, двухветвевой. Сечение надкрановой части –двутавр №70, толщина стенки 8 мм, размер полок – 120х10. Подкрановая часть – сварной швеллер, и прокатный двутавр. Размеры швеллера: стенка размером 630х16, полки 120х10. Двутавр 60Б1.
Колонна имеет раздельную базу, каждая ветвь колонны крепится к базе с помощью 4-х анкерных болтов.
Данные для расчета колонны получены при расчете поперечной рамы одноэтажного промышленного здания.
В графической части приведены чертежи всех конструкций.

 
Дата добавления: 11.02.2021
РП 3600. НВК Фармацевтическое производство в Московской области | AutoCad

Схема системы хоз-питьевого водоснабжения площадки предприятия принята следующая: от двух скважин (1 рабочей и 1 резервной) вода поступает по двум ниткам в два резервуара, расположенных на площадке завода. Проектом предусматривается строительство двух резервуаров для воды объемом 100 м3 каждый. В резервуарах предусмотрены специальные мероприятия по предотвращению заражения запаса воды - ликвидация прямого контакта внутреннего пространства резервуара с атмосферным воздухоми организация воздухообмена через гидравлический пылеуловитель. В резервуарах хранится регулируемый запас на хоз-питьевые и производственные нужды. Приняты два резервуара по объемом по 500 м3. Приняты сборные железобетонные резервуары по типовому проекту 904-4-59.83. Наружная сеть хозяйственно-питьевого водопровода оборудуется водопроводными колодцами по т. п. 901-09-11.84 с установкой в них арматуры. Из резервуаров вода насосами 2-го подъема подается в разводящую внутриплощадочную сеть к потребителям. Насосная станции FloTenk-PNS из стеклопластика размерами H — 2700 мм, D — 2300 мм. Насосное оборудование - WILO Comfort COR-3 MVI 1608/SKw-EB-R.
Схема системы противопожарного водоснабжения площадки предприятия принята следующая: от двух резервуаров, расположенных на площадке завода вода противопожарными насосами подается в разводящую внутриплощадочную кольцевую сеть на нужды наружного и внутреннего пожаротушения.
Проектом предусматривается строительство двух резервуаров для системы противопожарного водоснабжения. В резервуарах хранится запас воды на наружное и внутреннее пожаротушение, а также на установку автоматического пожаротушения.
Приняты два резервуара по объемом по 500 м3. Приняты сборные железобетонные резервуары по типовому проекту 904-4-59.83. Насосная станция FloTenk-PNS из стеклопластика размерами H — 2600 мм, D — 3700 мм и оборудованием WILO-NLG 200/400-75/4
Расход воды на внутреннее пожаротушение составляет 2х5,2 л/с, на наружное - 30 л/с при расчетном времени тушения 3 часа. Расход воды на установку АПТ принят по технологическому заданию составляет 100,4 л/с.
Сеть запроектирована из полиэтиленовых водопроводных труб диаметром 100 - сети, 50 - вводы мм по ГОСТ 18599-2001, в местах пересечения с канализацией сеть выполняется из стальных труб в футляре.
Глубина заложения сети ~2.0 м от поверхности земли.
Наружная сеть противопожарного водопровода запроектирована кольцевой. Водопроводная сеть оборудуется водопроводными колодцами по т. п. 901-09-11.84.
Сеть запроектирована из полиэтиленовых водопроводных труб диаметром ГОСТ 18599-2001, в местах пересечения с канализацией сеть выполняется в футляре из стальных труб .
Глубина заложения сети ~2.0 м от поверхности земли.
Проектируемые участки производственно-бытовой канализации подключаются к внутриплощадочным сетям производственно-бытовой канализации завода.
Точки подключения проектируемой производственно-бытовой канализации к существующим сетям приняты по техническим условиям.
Канализационная сеть оборудуется канализационными колодцами по т. п. 902-09-22.84.
Сеть запроектирована из канализационных труб ПВХ диаметром 100, 150 мм.
Глубина заложения сети ~1.2 м от поверхности земли.


1 общие данные.
2.генеральный план с сетиями
3.провиль сети В1
4 профиль сети В1
5. таблица водопроводных колодцев
6. схема сети в1. деталировка колодцев
7. профиль сети в2
8. профиль сети в2
9. таблица колодцев сети в2.
10. схема сети в2. деталировка колодцев.
11. профиль сети к1
12 профиль сети к1.
13. таблица канализационных колодцев
14. схема сети к1
15. профиль сети к2
16. профиль сети к2
17. профиль сети к2
18. таблица колодцев сети к2
19. таблица дождеприемников
20. схема ливневой канализации
21. схема монтажа линейного водоотвода
Дата добавления: 11.02.2021


© Rundex 1.2
Cloudim - онлайн консультант для сайта бесплатно.