Добавить проект
Прочитать правила
Платный доступ
Авторизация:
Информация


%20%20

Найдено совпадений - 7317 за 1.00 сек.


КП 7126. Курсовой проект - ТК на возведение монолитных железобетонных конструкций типового этажа 9-ти этажного жилого дома 30,4 х 18,6 м в г. Саратов | AutoCad
1. Область применения    2
2. Технология и организация выполнения работ.    3
3. Требования к качеству и приёмке работ    23
4. Потребность в материальных и технических ресурсах    29
5. Калькуляция затрат труда и машинного времени    31
6.График производства работ    40
7. Охрана труда и требования к безопасности    46
8. Технико-экономические показатели    48
Библиографический список    50


Строительство ведётся в г. Саратов, климатический район III, подрайон A, зона 2, расчётная температура наружного воздуха t = 27°C (СП 131.13330.2020 Строительная климатология).
Работы производятся в три смены, общее время на осуществление комплекса работ составляет 10 дней.
В составе работ, рассмотренных технологической картой, учтены: арматурные; опалубочные; бетонные, в том числе вспомогательные — подача материалов и уход за бетоном.
Для производства работ используется башенный кран Potain MCR 160, стационарный бетононасос Putzmeister BSA 1005 D3B в комплекте с бетонораздаточной стрелой Putzmeister MXR32-4.
В конструкциях применяется бетон класса В22,5, в качестве рабочей арматуры используется А400, конструкционной — А240.
 
Дата добавления: 31.12.2023
КП 7127. Курсовой проект - КД одноэтажного административного здания 35 х 18 м в г. Серпухов | AutoCad

Введение 
1. Расчёт клеефанерной плиты покрытия 
1.1 Исходные данные для проектирования 
1.2 Расчётные характеристики материалов 
1.3 Выбор конструктивной схемы, компоновка сечения 
1.4 Нагрузки и воздействия 
1.5 Статический расчёт плиты покрытия 
1.6 Расчет геометрических характеристик приведенного сечения 
1.7 Расчет по первой группе предельных состояний 
1.8 Расчет по второй группе предельных состояний 
1.9 Указания по герметизации стыков 
2. Расчёт гнутоклееной балки покрытия 
2.1 Предварительный подбор поперечного сечения колонны 
2.3 Статический расчет 
2.4 Определение геометрических параметров гнутоклеёной балки 
2.5 Расчет по первой группе предельных состояний 
2.5.1 Проверка прочности по нормальным напряжениям в опасном сечении 
2.5.2 Проверка прочности балки по тангенциальным и радиальным напряжениям. 
2.5.3 Проверка условия устойчивости плоской формы деформации 
2.5.4 Проверка прочности по касательным напряжениям 
2.5.5 Проверка условия прочности на местное смятие 
2.6 Расчет по второй группе предельных состояний 
3. Конструирование и расчет клееной дощатой колонны 
3.1 Расчётные характеристики материалов 
3.2 Сбор нагрузок на раму 
3.3 Расчет колонны по 1 группе предельных состояний 
3.3.1 Расчет на прочность по нормальным напряжениям внецентренно сжатых и сжато-изгибаемых элементов 
3.3.2 Расчет на устойчивость плоской формы деформирования сжатоизгибаемых элементов 
3.3.3 Расчет на устойчивость из плоскости как центрально-сжатого стержня 
3.4 Определение шага болтов сплачивающих ветвь 
4. Расчет узла защемления колонны в фундаменте 
5. Обеспечение пространственной жесткости и геометрической неизменяемости здания 
6. Мероприятия по защите конструкций от возгорания и биологического повреждения.  
Заключение 
Список литературы 
Приложение А 
Приложение Б 


Вид покрытия – мягкая черепица и здание отапливаемое, поэтому выбран прототип плиты покрытия коробчатого сечения с верхней и нижней обшивкой с продольными и поперечными ребрами и утеплителем «Техноруф». Сорт ограждающей конструкции покрытия – 1. Также конструктивно назначены связи
жесткости.
Размеры здания в плане по осям составляют 18 х 35 м с шагом несущих конструкций покрытия 5 м. Высота этажа здания равна 8 м. Поперечная жесткость и устойчивость каркаса обеспечивается поперечными рамами, продольная жесткость – горизонтальными и вертикальными связями.
Ограждающие конструкции покрытия выполнены из клеефанерной плиты,
несущие – из гнутоклееной балки. Колонна – клееная дощатая постоянного по
высоте сечения.


Номинальные размеры плиты в плане 1,2×5 м. Обшивки плиты приняты из фанеры повышенной водостойкости марки ФСФ по <5] (верхняя толщиной 8 мм, нижняя толщиной 6,5 мм) из берёзы; рёбра из досок 1 сорта, породы сосна. Все деревянные элементы подвергнуты механической обработке.
Теплоизоляционный слой выполнен из минераловатного утеплителя в 2 слоя, общей толщиной 140 мм (нижний слой – утеплитель марки «ТЕХНОРУФ 45» толщиной 100 мм, объемный вес 135 кг/м3; нижний слой – утеплитель марки «ТЕХНОРУФ В60» толщиной 40 мм, объемный вес 180 кг/м3 ) на синтетическом связующем.
Над утеплителем выполнена воздушная прослойка толщиной 40 мм, для обеспечения вентиляции вдоль панели. Для крепления утеплителя применяются деревянные решетки из бруска сечением 25х25 мм.
Вид кровли – мягкая черепица. Уклон составляет 9°, соответствует требованиям по укладки рулонных материалов кровли при обеспечении требований по теплостойкости (таблица 5.1. <7]).
Место строительство расположено в городе Серпухов, Московской области и относится к III снеговому району I ветровому району, согласно приложению Е <2]. Для района строительства температура наиболее холодной пятидневки составляет -29 °С.
Назначение здания – административный корпус. Здание отапливаемое, температура внутри помещения плюс 21 °С. Согласно таблице 1 и А.2 <1] условия эксплуатации принимается «2» – нормальный режим.
Срок службы конструкции 50 лет. По степени ответственности одноэтажное административное здание относится к классу «КС-2» – нормальный уровень ответственности. Коэффициент надёжности от ответственности 𝛾𝑛 = 1, согласно табл. 2 ГОСТ 27751-2014 <4].
Деревянные элементы (продольные и поперечные ребра) имеют пропитку составом марки «Биопирен® «Pirilax®»-Classic» (ТУ 2499-027- 24505934-05) осуществляющую огнезащиту (антипирен) и биологическую защиту.
Дата добавления: 02.01.2024
КП 7128. Курсовой проект – ТК на производство земляных работ при вертикальной планировке строительной площадки | AutoCad

ВВЕДЕНИЕ 2
1 Производство работ при вертикальной планировке площадки 3
1.1 Расчет черных, красных и рабочих отметок площадки 3
1.2 Определение земляных масс на площадке. 6
1.3 Определение средней дальности перемещения грунта на площадке 10
1.4 Выбор способа производства работ и комплекта машин для вертикальной планировки площадки 11
1.5 Расчет экономической эффективности варианта комплексной механизации работ при вертикальной планировке площадки 12
2 Разработка котлована экскаватором 14
2.1 Определение объемов земляных работ при отрывке котлована 14
2.2Подбор машин и транспортных средств для разработки котлована .15
3Определение трудоемкости производства земляных работ 18
4 Разработка календарного плана производства работ 18
5 Контроль качества работ 20
6 Разработка мероприятий по безопасному производству земляных работ ..21
7 Технико-экономические показатели 22
ЗАКЛЮЧЕНИЕ 23
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 24


1. Схема площадки: 4
2. Тип грунта: песок, плотность - 1,6 т/м3
3. Заданная отметка горизонтали площадки: 83 м
4. Сечение горизонталей: 1,0 м
5. Проектируемый уклон: 0,003
6. Размер площадки: 240х180 м
7. Дальность вывоза грунта: 3 км
8. Схема фундамента: № 4
9. Глубина котлована: 1,8 м
10. Размеры фундамента: 12х96 м


В курсовой работе, в соответствии с заданием, разработаны технологические схемы производства земляных и строительно-монтажных работ при возведении нулевого цикла здания с размерами в осях 96х12 м на площадке с размерами 240х180 м. 
Для выполнения земляных работ выбраны машины: скрепер ДЗ-20, бульдозер ДЗ-17, каток Д-551А, экскаватор Э-505. Схемы работы машин представлены в графической части. Скрепер осуществляет движение по «зигзагу» схеме. Котлован разрабатывается экскаватором за две проходки. Срезка растительного слоя производится бульдозером полосами шириной 3970 мм траншейным способом. Каток движется по спирально-кольцевой.


 



Дата добавления: 03.01.2024
КП 7129. Курсовой проект - Трехфазный сепаратор | Компас

ВВЕДЕНИЕ 
1 Физические и механические свойства материала и перекачиваемой жидкости 
2 Расчет толщин стенок цилиндрических обечаек и крышки 
2.1 Расчет толщины стенки аппарата 
2.2 Расчет толщины стенки сборника воды 
2.3 Расчет толщины стенки эллиптического днища аппарата 
2.4Расчет толщины стенки эллиптического днища сборника воды 
2.5 Расчет толщины стенки люка – лаза 
2.6 Расчет толщины плоской крышки люка – лаза 
3 Проведение гидроиспытаний аппарата на прочность и герметичность 
4 Расчет укреплений 
4.1 Расчет укреплений штуцера для замера уровня нефти Н9 
4.2 Расчет укрепления штуцера люка – лаза Н1 
5 Расчет седловых опор аппарата 
ЗАКЛЮЧЕНИЕ 
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 

Трехфазный сепаратор изготовлен из стали 09Г2, у которой допускаемое напряжение при 20℃ <σ]_20=180 МПа, а при 100℃ <σ]_100=160 МПа согластно ГОСТ 34233.1 – 2017, допускаемое напряжение <σ],МПа. Так как рабочая температура аппарата соответствует 80℃, то допускаемое напряжение будем находить по следующему соотношению:
<σ]_80=180+(160-180)/(100-20)∙(80-20)=165 МПа
Напряжения текучести для проведения гидроиспытаний при 20℃ также примем согласно ГОСТ 34233.1 – 2017.
<σ_T^20 ]=270 МПа
В трехфазном сепараторе находится газожидкостная смесь, примем плотность p равной 900 кг/м^3.
Модуль продольной упругости материала стали 09Г2 при 80℃, согласно ГОСТ 34233.1 – 2017 равен:
E=1,92 ∙10^5  МПа
Давление внутри аппарата равно 15 кгс/〖см〗^2, для дальнейших расчетов переведем давление в систему СИ.
P_раб=15 кгс/〖см〗^2 =15∙98100=1,4715 МПа

ЗАКЛЮЧЕНИЕ
В данной курсовой работе был выполнен расчет трехфазного сепаратора, в ходе которого были определены:
толщины цилиндрических обечаек и проверены условия прочности;
толщины стенок эллиптических днищ и проверены условия прочности;
толщина крышки люка – лаза;
проверена возможность проведения гидравлических испытаний;
был произведён расчет штуцера H9 и обечайки диаметром d, в ходе которого были определены их основные размеры и проведены условия укрепления и прочности;
произведен расчет нагрузки на седловую опору и подобрана стандартная опора, для которой проверены условия прочности, устойчивости, а также выполнена проверка несущей способности.
В результате был получен аппарат, соответствующий нормам государственных стандартов и способный выдержать заданные нагрузки и работать при данных условиях.
Дата добавления: 08.01.2024
КП 7130. Курсовой проект - Проектирование привода общего назначения (редуктор червячный) | Компас

1.Техническое задание    2
2. ЭСКИЗНЫЙ ПРОЕКТ    3
2.1. Выбор электродвигателя. Кинематический и силовой расчет привода. Расчет основных геометрических параметров    7
2.2. Расчет редукторной передачи
2.3 Нагрузка валов редуктора    9
2.4 Проектный расчет валов. Эскизная компоновка редуктора.    10
2.5 Определение опорных реакций. Построение эпюр моментов. Проверочный расчет подшипников 13
3. ТЕХНИЧЕСКИЙ ПРОЕКТ    16
3.1 Конструктивная компоновка привода    16
3.2 Тепловой расчет редуктора.    20
3.3 Смазывание.    20
3.4 Выбор муфты    20
3.5 Расчет шпоночных соединений    21
3.6 Уточненный расчет валов    22
3.7 Сборка редуктора    25
4. РАБОЧАЯ ДОКУМЕНТАЦИЯ    26
4.1 Разработка сборочного чертежа редуктора    26
4.2 Разработка чертежа общего вида привода    27
4.3 Разработка рабочих чертежей деталей    28
4.4 Спецификации    28
СПИСОК ЛИТЕРАТУРЫ    29


Рвых - 0,8 кВт
ωвых - 7,43 с-1
nc - 1500 мин-1
Дата добавления: 10.01.2024
КП 7131. Курсовой проект - Расчет насадочной абсорбционной колонны и холодильника абсорбента на прочность NH3 | Компас

1 Введение 
2 Литературный обзор 
3 Сравнительная характеристика и выбор основного оборудования 
3.1 Выбор конструкции аппарата 
4  Описание технологической схемы установки 
5 Основные свойства рабочих сред 
6 Выбор конструкционного материала 
7 Технологический расчет абсорбера 
7.1 Материальный баланс 
7.2 Движущая сила массопередачи 
7.3 Определение скорости газа и диаметра абсорбера с насадкой кольца Рашига 
7.4 Плотность орошения колонны… 
7.5 Определение коэффициента массопередачи для абсорбера с насадкой кольца Рашига 
7.6 Поверхность массопередачи и высота абсорбера с насадкой кольца Рашига 
7.7 Гидравлическое сопротивление абсорбера с насадкой кольца Рашига 
8 Конструктивный расчет аппарата 
8.1 Выбор основных конструкционных материалов 
8.2 Определение расчетных параметров 
8.2.1. Расчетная температура 
8.2.2. Допускаемые напряжения 
8.2.3. Рабочее, расчетное и пробное давления 
8.2.4. Коэффициент прочности продольных швов 
8.2.5. Прибавки к расчетной толщине стенки 
8.3 Расчет толщины цилиндрической обечайки 
8.3.1. Расчет в рабочих условиях 
8.3.2.Расчёт в условиях испытаний (Гидроиспытания) 
8.4 Расчет эллиптического днища 
8.4.1. Расчет в рабочих условиях 
8.4.2. Расчёт в условиях испытаний (Гидроиспытания) 
8.5 Определение трубопроводов и диаметров штуцеров для ввода и вывода теплоносителей 
8.5.1. Вход и выход газовой смеси 
8.5.2. Вход и выход воды 
8.5.3. Расчет люка, штуцеров «а» и «б» 
8.6 Выбор фланцев для обечайки, люка и штуцеров аппарата 
8.7 Подбор газодувной машины 
8.8 Подбор насоса для подачи воды 
8.9 Расчет укрепления отверстий 
8.9.1. Расчет диаметра одиночного отверстия, не требующего укрепления для эллиптического днища аппарата 
8.9.2. Расчетная толщина эллиптического днища в месте расположения штуцера 
8.9.3. Расчетный диаметр одиночного отверстия в обечайке, не требующего укрепления, при наличии избыточной толщины стенки сосуда 
8.9.4. Проверка необходимости укрепления отверстий обечайки 
8.9.5. Расчет укрепления одиночного отверстия в обечайке (dу=500мм) 
8.10 Выбор опор 
8.11 Выбор строповых устройств 
9 Расчет холодильника абсорбента
10 Гидравлический расчет 
11 Заключение 
12 Список литературы 


Выполнить подробный расчет абсорбционной колонны и теплообменника, указанного в таблице исходных данных.
Представить технологическую схему абсорбционной установки и выполнить чертеж колонны. 




1.Колонна абсорбционная предназначена для очистки воздуха от аммиака водой. Сейсмичность районов, в которых возможна установка колонны должна быть не более 6 баллов по шкале MSK-64.
2.Рабочая среда:
-наименование - аммиачно-воздушная смесь
-состояние - газ
-плотность, кг/м - 0,00002
-класс опасности по ГОСТ 12.1.007 - 4
-воспламеняемость - да
- категория и группа взрывоопасности смеси - IIАТ T1
- Рабочее давление, изб., МПа - 0,3
- Расчетное давление, МПа - 0,32
- Пробное гидравлическое давление, МПа - 0,62
- Температура рабочая,  С - 65
- Температура расчетная,  С - 65
- Температура абсорбции,  С - 20
3.Окружающая среда:
- место установки - наружное, на открытой площадке
4.Скорость коррозии, не более, мм/год - 0,1
5.Срок службы, лет - 20
6.Объем расчетный, м - 56
7.Группа аппарата по ГОСТ Р 52630-2012 - 1


1.На основании литературного обзора была выбрана абсорбционная колонна насадочного типа, т.к. такие аппараты по сравнению с другими типами абсорберов менее громоздки, имеют простую конструкцию, могут использоваться при работе с агрессивными средами, имеют низкое гидравлическое сопротивление.
2.В результате технологического расчета основного аппарата были получены следующие значения:
- диаметр абсорбера – 6,6 м;
- высота слоя насадки 39,5 м; 
- высота колонны – 41,6 м;
- поверхность массопередачи в абсорбере – 841 м2;
- гидравлическое сопротивление орошаемой насадки – 37,1 кПа
3.Был проведен расчет вспомогательного оборудования: кожухотрубчатого холодильника абсорбента с трубами длинной L=3 м и номинальной поверхностью F=221 м2, диаметром кожуха D=1,0 м, dтр=20х2 мм, n=1173 шт, z=1.
Соотношение n/z=1173.
Таким образом, поставленная в курсовом проекте цель выполнена.
 
Дата добавления: 10.01.2024
КП 7132. Курсовой проект - Расчет однокорпусной выпарной колонны NaCl | Компас

Задание на проектирование    2
Введение    6
1 Литературный обзор    7
1.1 Теоретические основы процесса выпаривания    7
1.2 Основные технологические схемы    9
1.3 Конструкции выпарных аппаратов    14
1.3.1 Выпарные аппараты с естественной циркуляцией    14
1.3.2 Выпарные аппараты с принудительной циркуляцией    16
1.3.3 Пленочные выпарные аппараты    17
2 Описание технологической схемы    20
3 Основные свойства рабочих сред    21
4 Выбор конструкции аппарата    23
5 Технологические расчеты    24
5.1 Расчет материального баланса выпарной установки    24
5.2 Расчет температурных депрессий    25
5.2.1 Температурные потери от гидравлических сопротивлений    25
5.2.2 Температурные потери от концентрационной (температурной) депрессии    26
5.2.3 Температурные потери от гидростатического эффекта    27
5.3 Определение температуры кипения раствора    29
5.4 Расчет теплового баланса выпарной установки    30
5.5 Тепловой расчет греющей камеры    32
5.6 Определение толщины тепловой изоляции    37
6 Конструктивный расчет аппарата    39
6.1 Выбор основных конструкционных материалов    39
6.2 Определение числа кипятильных трубок    39
6.3 Определение основных конструктивных параметров корпуса    40
6.4 Определение расчетных параметров    42
6.4.1 Расчетная температура    42
6.4.2 Допускаемые напряжения    42
6.4.3 Рабочее, расчетное и пробное давления    42
6.4.4 Коэффициент прочности продольных швов    43
6.4.5 Прибавки к расчетной толщине стенки    44
6.5 Расчет толщины цилиндрической обечайки    44
6.5.1 Расчет в рабочих условиях    44
6.5.2 Расчёт в условиях испытаний (Гидроиспытания)    45
6.6 Расчет эллиптического днища греющей камеры    46
6.6.1 Расчет в рабочих условиях    46
6.6.2 Расчёт в условиях испытаний (Гидроиспытания)    46
6.7 Определение трубопроводов и диаметров штуцеров    47
6.7.1 Расчет толщины стенки штуцеров «а» и «б»    48
6.8 Выбор фланцев для обечайки, люка и штуцеров аппарата    49
6.9 Расчет укрепления отверстий    50
6.9.1 Расчет диаметра одиночного отверстия, не требующего укрепления для эллиптического днища сепаратора    50
6.9.2 Расчетная толщина эллиптического днища в месте расположения штуцера    50
6.9.3 Расчет диаметра одиночного отверстия, не требующего укрепления для эллиптического днища греющей камеры    51
6.9.4 Расчетная толщина эллиптического днища в месте расположения штуцера    51
6.9.5 Расчетный диаметр одиночного отверстия в обечайке, не требующего укрепления, при наличии избыточной толщины стенки сосуда    51
6.9.6 Проверка необходимости укрепления отверстий обечайки    52
6.9.7 Расчет укрепления одиночного отверстия в обечайке 
(dу=600мм)    52
6.10 Выбор опор    55
6.11 Выбор строповых устройств    56
7 Расчет и выбор теплообменника    57
7.1 Тепловой расчет теплообменника    57
7.2 Гидравлический расчет теплообменника    64
8 Расчет вспомогательного оборудования    68
8.1 Расчет и выбор барометрического конденсатора    68
8.2 Расчет и выбор вакуум-насоса    71
Заключение    74
Список использованной литературы    75


Выполнить проект однокорпусной выпарной установки для концентрирования водного раствора NaCl. Производительность по исходному раствору   = 5,0 кг/с. Раствор упаривается от концентрации   = 10 % (масс.) до   = 25 % (масс.). Давление греющего пара   = 0,2 МПа, давление в барометрическом конденсаторе  =0,03 МПа. Исходный раствор перед подачей в выпарной аппарат подогревается греющим паром в кожухотрубчатом теплообменнике от температуры   = 30°С до температуры кипения. Упаренный раствор охлаждается в кожухотрубчатом холодильнике до температуры t = 25°С. Температуру охлаждающей воды принять в интервале 10…20 оС.
Сделать подробный расчет греющей камеры выпарного аппарата и холодильника упаренного раствора. Выполнить расчет барометрического конденсатора.


В данном курсовом проекте произведен расчет и спроектирована однокорпусная вакуум-выпарная установка для концентрирования водного раствора NaCl производительностью 5,0 кг/с. В проекте представлены теоретические основы и области применения процесса выпаривания, описание конструкции вакуум-выпарной установки, приведена принципиальная технологическая схема вакуум-выпарной установки. В курсовом проекте произведены расчеты:
- материального баланса выпарной установки;
- температурных депрессий;
- температуры кипения раствора;
- теплового баланса выпарной установки;
- греющей камеры.
Также были произведены расчеты вспомогательного оборудования: холодильника упаренного раствора, барометрического конденсатора и вакуум-насоса.

 
Дата добавления: 10.01.2024
КП 7133. Курсовой проект - ТП изготовления отливки детали "Вилка" | Компас

Введение    4
1. Анализ технологичности отливки    5
2. Выбор способа литья    5
3. Выбор поверхности разъёма модели и формы    6
4. Определение положения отливки в форме при заливке    6
5. Определение припусков на механическую обработку    7
6. Определение количества отливок в форме, габаритов опок и расположения моделей на плите    10
7. Расчёт литниковой системы    10
7.1. Выбор типа литниковой системы    12
7.2. Выбор места подвода металла к отливке    13
8. Определение формы и размеров знаков стержней, уклонов, зазора между знаком формы и стержня, выбор плоскости набивки стержневого ящика    15
9. Конструирование модельной оснастки    15
10. Выбор формовочной и стержневой смеси    16
11. Заливка форм    16
12. Выбивка и разделка кустов отливок    16
13. Термообработка    17
14. Очистка отливок    17
15. Обрубка и сдача отливок    17
Заключение    18
Список литературы    19


Характер производства - крупносерийное. Формы изготавливаются на машине 234м. Формовка по алюминиевым моделям в литых стальных опоках. Конструкция отливки «Вилка» удовлетворяет следующим требованиям.
а)Согласно выбранной марки стали обеспечивается структура и нужный уровень механических свойств.
б)Конфигурация стержней обеспечивает их устойчивое положение в форме.
в)Обеспечивается вывод газов из формы через газонаколы.



В ходе выполнения выпускной работы был произведен расчет параметров на отливку «Вилка».
В соответствии с методической литературой были выбраны:
1.Поверхность разъема моделей и формы.
2.Положение отливки в форме при заливке.
3.Место подвода жидкого металла в полость литейной формы
Были рассчитаны в соответствии с ГОСТ:
1.стержневые знаки
2.зазоры между знаком формы и стержня
3.литниковая система
Также был разработан технологический процесс изготовления отливки «Вилка».

 
Дата добавления: 11.01.2024
КП 7134. Курсовой проект - ТП изготовления отливки "Пятник низа" | Компас

Введение    4
1. Анализ технологичности отливки    5
2. Выбор способа литья    5
3. Выбор поверхности разъёма модели и формы    6
4. Определение положения отливки в форме при заливке    6
5. Определение припусков на механическую обработку    7
6. Определение количества отливок в форме, габаритов опок и расположения моделей на плите 10
7. Расчёт литниковой системы    11
7.1. Выбор типа литниковой системы    12
7.2. Выбор места подвода металла к отливке    13
8. Определение формы и размеров знаков стержней, уклонов, зазора между знаком формы и стержня, выбор плоскости набивки стержневого ящика    15
9. Конструирование модельной оснастки    15
10. Выбор формовочной и стержневой смеси    16
11. Заливка форм    16
12. Выбивка и разделка кустов отливок    16
13. Термообработка    17
14. Очистка отливок    17
15. Обрубка и сдача отливок    17
16. Расчет прибыли    18
Заключение    19
Список литературы    20


Характер производства - крупносерийное. Формы изготавливаются на машине 234М. Формовка по алюминиевым моделям в литых стальных опоках. Конструкция отливки «Пятник» удовлетворяет следующим требованиям.
а)Согласно выбранной марки стали обеспечивается структура и нужный уровень механических свойств.
б)Конфигурация стержней обеспечивает их устойчивое положение в форме.
в)Обеспечивается вывод газов из формы через газонаколы.



В ходе выполнения выпускной работы был произведен расчет параметров на отливку «Пятник».
В соответствии с методической литературой были выбраны:
1.Поверхность разъема моделей и формы.
2.Положение отливки в форме при заливке.
3.Место подвода жидкого металла в полость литейной формы Были рассчитаны в соответствии с ГОСТ:
1.стержневые знаки
2.зазоры между знаком формы и стержня
3.литниковая система
Также был разработан технологический процесс изготовления отливки «Пятник».


 
Дата добавления: 11.01.2024
РП 7135. ЭС Здание АТС в Смоленской области | AutoCad

Решения по организации охранно-пожарной сигнализации данным проектом не рассматриваются.
Проектом предусматривается автоматический заряд аккумуляторной батареи, предпусковой прогрев двигателя, автоматическое регулирование частоты и напряжения ДЭС.
Электропитание приводов решеток жалюзи осуществляется непосредственно от работающего генератора. Закрытие решеток после останова генератора происходит автоматически за счет запасенной механической энергии.
Контрольные и силовые кабели прокладываются в кабельной канализации в ПВХ трубах и роволочном лотке.
Подключение электроприемников к ДЭС осуществляется через проектируемый щит ШАВР, расположенный в помещении дизельной. Контейнер оборудован панелью автоматического управления с контроллером DSE-7320.
Использование двухлучевой схемы и трехвводовых АВР обеспечивает требуемую надежность электроснабжения потребителей.
Проектом предусмотрена передача основных сигналов (ALARM) характеризующих работу ДЭС и ситуации внутри помещения дизельной как до щита автоматики DSE 7320, так и на кросс, для дальнейшей их ретрансляции в диспетчерскую службу ОАО "Ростелеком". Для согласования уровней выходных сигналов от ДЭС во входные сигналы модулей дискретного ввода используется щит промежуточных реле сигнализации.
Подключение оборудования выполнить по системе заземления TN-S в соответствии с ПУЭ-7. Обеспечить надежное соединение всех металлических частей оборудования и конструкций с контуром заземления. Обеспечить защиту контактных соединений в цепи заземления от механических воздействий и воздействия окружающей среды.
Для помещения с ДЭС выполнить отдельный контур заземления, соединяемый, после испытания на соответствие требованиям, с существующим контуром заземления с зданием АТС.
 


Общие данные
Структурная схема электроснабжения
Схема принципиальная однолинейная электроснабжения
Чертеж общего вида генератора АД-20
Схема принципиальная силовых цепей генератора
Схема принципиальная ЩСН ДГУ
Спецификация оборудования ЩСН ДГУ
Блок автоматики DSE 7320. Схема принципиальная
Щит ШАВР. Схема принципиальная
АД-20 - ШАВР. Схема подключения
Цепи сигнализации. Схема подключения
Основные сигналы ALARM. Схема подключения
План расположения оборудования в помещении дизельная
План освещения в помещении дизельная
Схема прокладки кабельных линий
План заземления
Трасса прокладки кабелей
Кабельный журнал
Дата добавления: 11.01.2024
РП 7136. ЭС Реконструкция дизельной в г. Краснодар | AutoCad

Помещении дизельной оборудовано следующими системами: охранно-пожарной сигнализацией, рабочим и аварийным освещением, шкафом собственных нужд, приточно-вытяжной вентиляцией, выхлопной системой.
Решения по организации охранно-пожарной сигнализации данным проектом не рассматриваются.
Проектом предусматривается автоматический заряд аккумуляторной батареи, предпусковой прогрев двигателя, автоматическое регулирование частоты и напряжения ДЭС.
Электропитание приводов решеток жалюзи осуществляется непосредственно от работающего генератора. Закрытие решеток после останова генератора происходит автоматически за счет запасенной механической энергии.
Контрольные и силовые кабели прокладываются по проектируемым металлоконструкциям.
Подключение электроприемников к ДЭС осуществляется через существующий шкаф панель №2, расположенный в помещении щитовой. ДЭС имеет шкаф АВР с панелью автоматического управления с контроллером DSE-7320.
Использование двухлучевой схемы обеспечивает требуемую надежность электроснабжения потребителей.
Проектом предусмотрена передача основных сигналов (ALARM) характеризующих работу ДЭС и ситуации внутри контейнера как до щита автоматики DSE 7320, так и на кросс, для дальнейшей их ретрансляции в диспетчерскую службу ОАО "...". Для согласования уровней выходных сигналов от ДЭС во входные сигналы модулей дискретного ввода используется щит промежуточных реле сигнализации.
Подключение оборудования выполнить по системе заземления TN-С-S в соответствии с ПУЭ-7. Обеспечить надежное соединение всех металлических частей оборудования и конструкций с контуром заземления. Обеспечить защиту контактных соединений в цепи заземления от механических воздействий и воздействия окружающей среды.
В помещении дизельной выполнить контур заземления, соединяемый, с существующим контуром заземления объекта связи.


Общие данные
Структурная схема электроснабжения
Схема принципиальная однолинейная электроснабжения
План демонтируемого оборудования в помещении дизельной
План расположения оборудования в помещении дизельной
План расположения осветительного оборудования в помещении дизельной
Чертеж общего вида генератора INMESOL AР-145
Схема принципиальная силовых цепей генератора
Блок автоматики DSE 7320. Схема принципиальная
Схема принципиальная ЩСН ДГУ
Спецификация оборудования ЩСН ДГУ
Сигнализатор МС-3. Схема подключения
Цепи сигнализации. Схема подключения
Схема подключения ДЭС
Трасса прокладки кабелей в помещении дизельная
Трасса прокладки кабелей по фасаду здания
Трасса прокладки кабелей в помещении щитовая
План заземления в помещении дизельная
Система уравнивания потенциалов
Кабельный журнал
Дата добавления: 11.01.2024
КП 7137. Курсовой проект - ТС района города Нижний Новгород | AutoCad

Введение
1 Исходные данные и общие положения
1.1 Перечень исходных, вспомогательных и справочных данных к выполнению проекта
1.2 Определение категории потребителей по надёжности теплоснабжения и их расчётных тепловых нагрузок
1.3 Расчёт объёмов годового потребления, отпуска в сеть и выработки тепловой энергии для района города
1.4 Графики регулирования отпуска тепловой энергии в сеть от ЦТП
1.4.2 График часовой тепловой выработки в зависимости от температуры наружного воздуха
2 Тепловая сеть
2.1 Трассировка трубопроводов, способы прокладки. Расчётная схема проектируемой тепловой сети
2.2 Расчёт расходов теплоносителя в отопительный и неотопительный периоды года по точкам теплопотребления и расчётным участкам тепловой сети
2.3 Гидравлический расчёт тепловой сети
3 Источник теплоснабжения
3.1 Расчёт числа и единичной теплопроизводительности котлоагрегатов для котельной. Подбор котлов
3.2 Расчёт параметров и подбор насосного оборудования котельной
4 Исходные данные и общие положения
4.1 Система теплоснабжения от проектируемого ЦТП. Проектируемый ЦТП
4.2 Температурный график работы отопительной тепловой сети Т11–Т21
4.3 Температурный график работы тепловой сети централизованного горячего водоснабжения Т3–Т4
4.3.3 График часовых тепловых потоков, отпускаемых в сеть, с расчётом годовых объёмов отпуска
4.4 Тепломеханическая система схема ЦТП
4.4.1 Элементы тепломеханической схемы ЦТП и их функциональное значение
4.4.2 Температуры и расходы теплоносителя по участкам тепломеханической схемы
4.4.3 Диаметры трубопроводов по участкам тепломеханической схемы
4.5 Подбор оборудования и технических устройств ЦТП
4.5.1 Подбор теплообменного оборудования ЦТП
4.5.2 Подбор насосного оборудования ЦТП
5. Экономическое обоснование системы теплоснабжения района города
Заключение
Список литературы
Приложения


Город (с идентичными климатическими параметрами)    Нижний Новгород
Генплан района     1
Точка расположения источника теплоснабжения на генплане     0
Номер микрорайона, для которого требуется подобрать оборудование ЦТП     10
Таблица сведений по расчётным микрорайонам     10
Температурный график работы тепловой сети от источника теплоснабжения,  T1max–T2max, оС    130–70
Расчётные тепловые потери в тепловых сетях в процентах от расчётного теплопотребления, kтп, %    5
Параметры температуры теплоносителя для квартальной отопительной тепловой сети, t11max–t21max, оС    95–70
Расчётный минимальный располагаемый напор на вводе ЦТП, ΔHЦТП, м вод. ст.    20
Расчётный располагаемый напор на выводе Т11–Т21 ЦТП, Δhо, м вод. ст.    30
Потери напора в системе централизованного горячего водоснабжения от ЦТП в режиме максимальной циркуляции при расчётном циркуляционном расходе, hпотцирк, м вод. ст.    7


В составе жилой района присутствуют как жилые, так и обществен-ные здания. Жилые здания потребляют тепловую энергию на нужды отоп-ления и горячего водоснабжения, вентиляция в жилых зданиях – естественная приточно-вытяжная, с обеспечением притока через неплотно-сти притворов заполнения оконных и дверных проёмов и вытяжкой через вентиляционные каналы, устья которых расположены в кухнях и санузлах. Общественные здания (поликлиника, детский сад, школа и т.д.) потребля-ют тепловую энергию на нужды отопления, вентиляции и горячего водо-снабжения. Вентиляция в этих зданиях приточно-вытяжная с механическим побуждением и подогревом приточного воздуха в калориферах.


В ходе выполнения работы решён вопрос проектирования современной системы теплоснабжения для обслуживания тепловых нужд жилого района города, присоединённого к водяной тепловой сети от источника теплоснабжения.
В результате реализации проекта потребители района будут обеспечены тепловой энергией в требуемом количестве при необходимом качестве от современной экономичной системы теплоснабжения. 
Под качественным теплоснабжением следует понимать:
– соответствие расчётных тепловых нагрузок потребителей расчёт-ному отпуску теплоты;
– устойчивость гидравлического и теплового режимов системы теплоснабжения;
– надёжность системы теплоснабжения; возможность оперативного ремонта её элементов в случае выхода таковых из строя;
Под экономичным теплоснабжением подразумеваем:
– вариант, позволяющий получить более дешёвое тепло, чем другие;
– привлекательный для потенциальных инвесторов срок окупаемости проектных решений;
– ресурсо- и энергосбережение в процессе преобразования и передачи тепловой энергии;
– достижение поставленной цели с меньшими капитальными затратами.
Соответственно этому, повышение качества работы и экономичности проектируемого системы теплоснабжения обусловлено применением, в частности:
– современных пластинчатых теплообменных аппаратов;
– полной автоматизации системы с одной стороны, а с другой – возможности традиционного «ручного» контроля и управления;
– современных энергоэффективных материалов (в особенности теплоизоляционных);
– оборудования, материалов, арматуры и т.д. известных фирм-производителей;
– совместимость с существующими системами теплопотребления потребителей без необходимости реконструкции их.
Выполненный проект может служить основой для других исследований в этом направлении. Интересно, к примеру, рассмотреть вариант теплоснабжения жилого района с обустройством индивидуальных тепловых пунктов в каждом здании. Внедрение ИТП позволит отказаться от четырёхтрубной распределительной сети и перейти к двухтрубной, обеспечивающих индивидуальный подвод теплоснабжения к зданиям, сократить протяженность внутриквартальных тепловых сетей, но потребует переработки системы водоснабжения в части увеличения диаметров трубопроводов квартальной водопроводной сети, которые в этом случае должны обеспечивать ещё и пропуск расхода нагреваемой воды.
Также заслуживает внимания опыт применения новых нормативов, утверждённых постановлением Правительства РФ от 04.07.2020 № 985 «Об утверждении перечня национальных стандартов и сводов правил (частей таких стандартов и сводов правил), в результате применения которых на обязательной основе обеспечивается соблюдение требований Федерального закона «Технический регламент о безопасности зданий и сооружений», и о признании утратившими силу некоторых актов Правительства Российской Федерации».
Примечательно, что ни в одном официальном документе прямо не запрещается использование ранее действовавших СНиП в части, не противоречащей положениям Федерального закона «Технический регламент о безопасности зданий и сооружений». В силу этого реализован следующий подход:
– применяются стандарты, имеющие более позднюю дату актуализации;
– принимаются по возможности более жёсткие требования;
– применяются стандарты более ранней даты актуализации, если в последующих нормативах по тематике отсутствуют аналогичные положения и требования.
Все поставленные задачи решены полностью. Выполняемые расчёты последовательны, подробны, и опираются на действующие методики, нормы и правила с учётом вышеизложенных принципов.
 
 
 
Дата добавления: 12.01.2024
ДП 7138. Дипломный проект - Энергообеспечение производственной базы Приволжскнефтепровод на 75 тракторов с реконструкцией систем отопления и вентиляции | Компас

- выбора системы отопления в мастерской на 75 тракторов;
- выбор и компоновка инфракрасных обогревателей PANRAD;
- разработка схемы подачи газообразного топлива к инфракрасным обогревателям PANRAD;
- электроснабжение технологического процесса;
- разработке мероприятий по безопасности жизнедеятельности и энергосбережению.
- разработка мероприятий по энергосбережению.
В детальной части дипломного проекта разработана схема подключения и место установки инфракрасных обогревателей PANRAD. И роизведен выбор высоты установки
Дана технико-экономическая оценка дипломного проекта, по результатам которой интегральный срок окупаемости инженерных решений составляет 3,12 года и капиталовложениях 108.99 тыс. руб.

СОДЕРЖАНИЕ
СОДЕРЖАНИЕ 5
ВВЕДЕНИЕ 8
1 КРАТКАЯ ХАРАКТЕРИСТИКА ХОЯЙСТВА И ОБЪЕКТА ПРОЕКТИРОВАНИЯ 9
1.1 ХАРАКТЕРИСТИКА ХОЗЯЙСТВЕННОЙ ДЕЯТЕЛЬНОСТИ 9
1.2 ХАРАКТЕРИСТИКА ОБЪЕКТА 11
2 ОПРЕДЕЛЕНИЕ ПОТРЕБЛЕНИЯ ТЕПЛОВОЙ ЭНЕРГИИ 12
2.1 РАСЧЕТ ВОЗДУШНОГО ОТОПЛЕНИЯ МАСТЕРСКОЙ 12
2.2 РАСЧЕТ ПОТЕРЬ ТЕПЛА В МАСТЕРСКОЙ 15
2.3 РАСЧЕТ ВЕНТИЛЯТОРОВ 20
2.4 ВЫБОР ВЕНТИЛЯТОРОВ И ЭЛЕКТРОДВИГАТЕЛЕЙ К НИМ 22
2.5 РАСЧЕТ ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ 24
2.6 ВЫВОДЫ ПО РАЗДЕЛУ 27
3 РЕКОНСТРУКЦИЯ СИСТЕМЫ ОТОПЛЕНИЯ 28
3.1 ОПРЕДЕЛЕНИЕ ПЛОЩАДИ ПОВЕРХНОСТИ ТЕПЛООТДАЧИ НАГРЕВАТЕЛЬНЫХ РЕГИСТРОВ 28
3.2 ОПИСАНИЕ КОНСТРУКЦИИ ИНФРАКРАСНОГО ИЗЛУЧАТЕЛЯ 29
3.3 ВЫБОР ЛУЧИСТОГО ИНФРАКРАСНОГО УСТРОЙСТВА ДЛЯ РЕМОНТНОГО ЦЕХА 32
3.4 ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ГАЗОВОГО ЛУЧИСТОГО ОБОГРЕВАТЕЛЯ PANRAD МОДЕЛИ АА35 И АА50 33
3.5 ПРИНЦИП РАБОТЫ ТРУБНОГО ГАЗОГОРЕЛОЧНОГО ОБОГРЕВАТЕЛЯ ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ PANRAD35
3.6 ВВОД В ЭКСПЛУАТАЦИЮ 36
3.7 ВЫВОДЫ ПО РАЗДЕЛУ 38
4 ЭЛЕКТРОСНАБЖЕНИЕ 39
4.1 ИСХОДНЫЕ ДАННЫЕ ДЛЯ РАСЧЕТА 39
4.2 ВЫБОР АВТОМАТИЧЕСКИХ ВЫКЛЮЧАТЕЛЕЙ 40
4.3 ВЫБОР УСТРОЙСТВА ЗАЩИТНОГО ОТКЛЮЧЕНИЯ 42
4.4 ВЫБОР КОММУТАЦИОННОЙ АППАРАТУРЫ 42
4.5 ВЫВОДЫ ПО РАЗДЕЛУ 42
5 АВТОМАТИЗАЦИЯ 44
6 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ЭФФЕКТИВНОСТИ ПРОЕКТНЫХ РЕШЕНИЙ 46
6.1 РАСЧЁТ ЭКОНОМИЧЕСКИХ ПОКАЗАТЕЛЕЙ ВОДЯНОГО ОТОПЛЕНИЯ 47
6.2 РАСЧЁТ ЭКОНОМИЧЕСКИХ ПОКАЗАТЕЛЕЙ ЛУЧИСТОГО ОТОПЛЕНИЯ. 49
6.3 Наименование показателей 56
6.4 ВЫВОДЫ ПО РАЗДЕЛУ 58
7 БЕЗОПАСНОСТЬ ЖИЗНИДЕЯТЕЛЬНОСТИ НА ПРОИЗВОДСТВЕ 59
7.1 КРАТКАЯ ХАРАКТЕРИСТИКА ПОКАЗАТЕЛЕЙ АНАЛИЗА БЖД НА ОБЪЕКТЕ 59
7.2 АНАЛИЗ БЕЗОПАСНОСТИ ЖИЗНЕДЕЯТЕЛЬНОСТИ НА ОБЪЕКТЕ 60
7.2.1 КЛАССИФИКАЦИЯ УСЛОВИЙ ТРУДА 60
7.2.2 УТОЧНЕНИЕ ЗАДАЧ ПРОЕКТИРОВАНИЯ 61
7.3 РАЗРАБОТКА СИСТЕМ ЭЛЕКТРОБЕЗОПАСНОСТИ 62
7.4 СИСТЕМА СПОСОБОВ И СРЕДСТВ ЭЛЕКТРОБЕЗОПАСНОСТИ 62
7.5 Выбор индивидуальных средств защиты 63
7.5.1 РАСЧЕТ КОНСТРУКТИВНЫХ ПАРАМЕТРОВ ЗАЗЕМЛЯЮЩИХ УСТРОЙСТВ 64
7.5.2 РАСЧЕТ ИСКУССТВЕННОГО ОСВЕЩЕНИЯ 67
7.5.3 ВЫБОР УСТРОЙСТВ ЗАЩИТНОГО ОТКЛЮЧЕНИЯ 68
7.6 МОЛНИЕЗАЩИТА 68
7.7 ВЫБОР СРЕДСТВ ПОЖАРНОЙ БЕЗОПАСНОСТИ. 70
7.8 ПРОИЗВОДСТВЕННАЯ САНИТАРИЯ. 70
7.9 ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ. 71
7.10 ЗАКЛЮЧЕНИЕ. 71
8 МЕРОПРИЯТИЯ ПО ЭНЕРГОСБЕРЕЖЕНИЮ 72
8.1 ЭНЕРГОСБЕРЕЖЕНИЕ НА ОБЪЕКТЕ ПРОЕКТИРОВАНИЯ 72
8.2 МЕРОПРИЯТИЯ ПО ЭНЕРГОСБЕРЕЖЕНИЮ В ТЕПЛОСНАБЖЕНИИ 73
8.3 ЭНЕРГОСБЕРЕЖЕНИЕ В ЭЛЕКТРОСНАБЖЕНИИ 74
8.4 ВЫВОДЫ ПО РАЗДЕЛУ 75
ЗАКЛЮЧЕНИЕ 76
БИБЛИОГРАФИЧЕСКИЙ СПИСОК 77


1 Генеральный план производственной базы; 
2.Ремонтная мастерская на 75 тракторов; 
3.Системы отопления и вентиляции мастерской на 75 тракторов; 
4.План расположения и подключения инфракрасных обогревателей к газовой сети; 
5.Схема газовой горелки; 
6. Обогрев излучателем PANRAD. Межосевое расстояние.; 
7.Электрическая схема подключения излучателей PANRAD; 
8 Технико-экономическое обоснование эффективности проектных решений.

Объектом проектирования является мастерская на 75 тракторов ОАО «ПРИВОЛЖСКНЕФТЕПРОВОД», в которой проектируется отопления и вентиляции производственных помещений
Актуальность данного вопроса обусловлено тем, что при существующей системе отопления и вентиляции обеспечивается требуемое нормативными документами внутренняя температура помещений. Использование современных инфракрасных отопительных приборов PANRAD позволит снизить теплопотери в окружающую среду за счет снижения внутренней температуры воздуха и боле высокого КПД установок.В этой связи именно энергосбережение является ключевым способом повышения рентабельности.
В ходе расчета проектирования необходимо определить тепловую нагрузку мастерской на 75 тракторов, рассчитать тепловые сети, произвести выбор параметров теплоносителя, составить тепловую схему пункта, произвести компоновку пункта учета и регулировки, определить электрическую нагрузку и рассчитать внутренние тепловые сети гаража. Для управления оборудованием инфракрасного обогревателя предусмотреть систему автоматизации и контроля параметров воздуха и наличия пламени в горелочном устройстве. Разработать систему средств обеспечения безопасности. По результатам проектирования произвести расчет технико–эконмических показателей работы инфракрасных обогревателей. Проектирование систем отопления с использованием инфракрасных обогревателей позволяет уменьшить теплопотери в здание и уменьшить потребление газа за счет более высокого коэффициента полезного действия по сравнению с традиционными системами отопления. Таким образом, применение инфракрасных обогревателей имеет ряд преимуществ в области энергосбережения, что особенно актуально после введения 248 закона «Об энергоэффективности и энергосбережению».





В результате разработки дипломного проекта были решены такие задачи, как:
- расчёт тепловых нагрузок на отопление и вентиляцию, горячее водоснабжение, технологические нужды;
- расчёт и проектирование систем холодного водоснабжения и газоснабжения;
- расчёт электроснабжения, выбор марки и сечения проводов.
В результате углубленных расчётов отопления производственно-административного корпуса были исчислены потери теплоты через наружные ограждения, рассчитан тепловой поток на отопление цеха и поддержание в нём необходимой температуры. Произведена реконструкция системы отопления, в результате которой были заменены нагревательные приборы.
Была рассчитана силовая проводка внутри помещения. Были выбраны сечения проводов электрической проводки. Для предприятия были выбраны трансформаторные подстанции и рассчитаны их необходимые мощности.
В экономической части дипломного проекта проводится обоснование необходимости принятых в ходе выполнения проекта решений.
Дата добавления: 16.01.2024
КП 7139. Комплексный курсовой проект (колледж) - 10-ти этажный крупнопанельный жилой дом 25,6 х 13,2 м в г. Курск + ТК | AutoCad

1.1 Общая характеристика проектируемого здания    3
1.2 Объёмно-планировочное решение:    4
1.3 Расчёты к архитектурно – строительной части:    5
1.4 Конструктивные решения:    5
1.4.1 Фундаменты    6
1.4.2 Плиты перекрытия    8
1.4.3 Стены    8
1.4.4.Окна    9
1.4.5 Двери    9
1.4.6 Лестницы    9
1.4.7 Крыша    10
1.4.8 Кровля    10
1.4.9 Лифт    10
1.5 Отделка здания    10
1.6 Инженерное оборудование здания    16
1.7 Технико-экономические показатели    16


Длина проектируемого здания – 25600 мм, ширина – 13200 мм.
В проектируемом здании 10 этажей. Высота одного этажа – 3000 мм.
Конструктивная система жилого дома – бескаркасная с поперечными и продольными несущими стенами.
В данном проекте использован свайный фундамент. Свайные фундаменты выполняются из железобетонных свай и ростверка. 
Перекрытия выполнены из сплошных железобетонных плит перекрытия толщиной 160 мм, уложены на слой раствора. Глубина опирания на несущую – 90 мм.
Стены выполнены из железобетонных панелей. В качестве утеплителя применяются плиты из пенополистирола с графитовыми добавками. Наружная стена состоит из 3 слоёв: 1 слой состоит из модифицированного полистиролбетона  на шлакопортландцементе толщиной 60 мм, 2 слой из плит пенополистирола с графитовыми добавками толщиной 100 мм, 3 слой из  железобетона толщиной 100 мм. Внутренние несущие стены выполнены из железобетонных панелей толщиной 180 мм. Перегородки выполнены из гипсобетонных панелей 80 мм.
В проектируемом здании применяются лестничные марши длиной 3000 мм, шириной 1200 мм и лестничные площадки размерами 2500×1300 и 2500×1500 мм. Ширина проступи 300 мм. Высота подступёнка 150 мм.
В данном проекте использована плоская крыша. 
В данном проекте использована плоская кровля с уклоном 2˚. В состав кровли входит: кровельный материал «Стеклоизол Р», ребристая плита толщиной 300 мм, гидроизоляция, в качестве которой выступает цементно-песчаная стяжка толщиной 30 мм, утеплитель минеральная вата толщиной 150 мм, пароизоляция «Изоспан С», чердачная плита перекрытия 160 мм.
В данном проекте установлена лифтовая шахта размерами 1950×2200 мм и кабина лифта 1400×1200 мм. Данный грузопассажирский лифт выдерживает до 500 кг. 


Площадь застройки – 350,4 м^2
Строительный объём – 12018,72 м^3
Жилая площадь – 261,7 м^2
Общая площадь – 296,8 м^2
Планировочный коэффициент – 0,9
Объёмный коэффициент – 45,9 м^3/м^2


Введение    4
1 Техническая карта на устройство свайного основания и монолитного ростверка    5
1.1Область применения    5
1.2 Выбор и технико-экономическое обоснование способа производства работ, грузозахватных приспособлений    6
1.3 Выбор монтажного крана    7
1.3.1 Минимальный требуемый вылет стрелы крана    7
1.3.2. Максимальный требуемый вылет стрелы крана    7
1.3.3. Необходима грузоподъемность крана    8
1.3.4 Технология производства свайных работ    8
1.4 Техника безопасности    12
1.5 Порядок производства работ    12
1.6 Контроль качества    14
1.7 Свайные работы    15
1.8 Опалубочные, арматурные и бетонные работы    16
1.8.1 Зимние условия труда    17
1.9 Определение трудоемкости работ    17
1.10 Технико-экономические показатели  22
2 Технологическая карта на возведение монтажной части здания    22
2.1 Область применения    23
2.2 Подсчет объемов работ    23
2.3 Выбор и технико-экономическое обоснование способа производства работ, ведущего механизма, грузозахватные приспособлений.    26
2.3.1 Выбор грузозахватных механизмов    26
2.3.2 Выбор ведущего механизма    26
2.4 Указания по производству работ    27
2.4.1 Технология выполнения работ    27
2.4.2. Зимние условия труда    34
2.4.3 Контроль качества    35
2.4.4 Техника безопасности при производстве монтажных работ    35
2.5 Определение трудоемкости работ    37
2.6 Технико-экономические показатели   44
Заключение    44
Список используемых источников    46


В технологическую карту включены следующие работы:
1. Устройство щебеночной подготовки;
2. Устройство монолитного ростверка;
3. Устройство вертикальной гидроизоляции;
4. Устройство горизонтальной гидроизоляции;
Монтаж сборных железобетонных элементов ленточного фундамента выполняется в котловане глубиной 1,5м с помощью крана на гусеничном ходу МКГ-25.


В состав технологической карты входит:
1. Разгрузка материалов
2. Установка панелей наружных стен
3. Установка панелей внутренних стен
4. Монтаж перегородок здания 
5. Монтаж лестничных площадок и маршей
6. Монтаж лифтовой шахты
7. Монтаж плит перекрытия
8. Монтаж плит покрытия
9. Монтаж балконных плит
10. Электросварка монтируемых элементов
12. Герметизация стыков панелей
13. Заделка бетонных стыков
14. Заливка швов плит перекрытий
Работы ведутся комплексной бригадой монтажников, сварщиков, машинистов в составе 33 человек. Монтаж ведется в 1 смену.
 
Дата добавления: 15.01.2024
РП 7140. ПБ СС Детский сад в Ленинградской области | AutoCad

Проектом предлагается оснащение следующими системами:
-cистема пожарной сигнализации;
-cистема охранной сигнализации;
-система светового и звукового оповещения при пожаре и управление эвакуацией людей.
В состав системы входят следующие приборы управления и исполнительные блоки: 
-пуль контроля и управления "Рубеж-МК2";
-пульт контроля и управления "Рубеж-20П";
-пульт дистанционного управления "Рубеж-ПДУ";
-извещатель пожарный дымовой «ИП-212-64»;
-ручные пожарные извещатели «ИПР-513-11»;
-извещатель оптико-электронный объемный "ИО 32920-2";
-извещатель оптико-электронный поверхностный "ИО 40920-2";
-объектовая станция РСПИ «Стрелец-Мониторинг»;
-изолятор шлейфа "ИЗ-1-R3";
-извещатель тепловой "ИП 101-29-PR-R3 W1.02".


Общие данные.
Структурная схема охранно-пожарной сигнализации и системы оповещения 
План расположения оборудования речевого оповещения на 1 этаже 
План расположения оборудования речевого оповещения на 2 этаже 
План расположения оборудования светового оповещения на 1 этаже 
План расположения оборудования светового оповещения на 2 этаже 
План расположения оборудования охранной сигнализации на 1 этаже 
План расположения оборудования охранной сигнализации на 2 этаже 
План расположения оборудования пожарной сигнализации на 1 этаже 
План расположения оборудования пожарной сигнализации на 2 этаже 
План разделения здания на ЗКПС на 1 этаже 
План разделения здания на ЗКПС на 2 этаже 
План разделения здания на ЗКПС на 1 этаже (запотолочный) 
План разделения здания на ЗКПС на 2 этаже (запотолочный) 
План размещения оборудования обратной связи с МГН 
Схемы электрические подключений 
Расчет токопотребления 
Схема установки речевого оповещателя,светового и звукового оповещателя 
Задание на обеспечение электроснабжения


Проектом предусматривается создание на объекте 5 точек прохода системы контроля управления доступом (СКУД). 
Данным проектом предусматривается СКУД и СВН. 
СКУД строится на базе оборудования интегрированной системы «PARSEC NET». 
В состав входят:
-сетевой охранный контроллер «AC-08»;
-настольный считыватель карт доступа «HID/EM-Marine PR-EH08»;
-бесконтактные считыватели карт доступа «PNR-EH15»;
-устройства исполнительные - электромагнитные замки «AL-300»; 
-доводчик дверной «TS-71»;
-кнопки «ВЫХОД» «ST-EX010SM»;
-извещатели охранные магнитоконтактные "ИО 102-26"; источники питания «РАПАН-20».


Общие данные.
Структурная схема системы видеонаблюдения 
Структурная схема системы контроля и управления доступом 
План расположения оборудования СВН на 1 этаже 
План расположения оборудования СВН на 2 этаже 
План расположения оборудования СКУД на 1 этаже 
План расположения оборудования СКУД на 2 этаже 
Расстановка наружной системы видеонаблюдения 
Система вызывной сигнализации для МГН 
Маркировка информационного кабеля 
Эскиз крепления телекамеры 
Монтажная схема щита ЩВН 
Общий вид щита ЩВН 
Схема монтажа оборудования (СКУД) 
Схема подключения оборудования (СКУД) 
Задание на обеспечение электроснабжения (СВН) 
Задание на обеспечение электроснабжения (СКУД) 
Кабельный журнал
Дата добавления: 16.01.2024

На страницу 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488

© Rundex 1.2
 
Cloudim - онлайн консультант для сайта бесплатно.